کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


آخرین مطالب


 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


 



2-11-2- آنتن فرکتالی سرپینسکی کوتاه شده صفحه ای. 56
2-11-3- آنتن صفحه ای پارانی. 56
فصل سوم :  آنتن فرکتالی مربعی
3-1- مقدمه 62
3-2- بررسی خاصیت چندبانده بودن ساختار فرکتالی مربعی62
3-3- آنتن فرکتالی چندبانده 64
3-4- ساختار فرکتالی مربعی66
3-5- تغذیه با خط مایکرواستریپ هم صفحه 67
3-6- پلاریزاسیون دایروی در آنتن های مایکرو استریپ مربعی68
3-6-1- آنتن فرکتالی مربعی با پلاریزاسیون دایروی. 70
3-7- طراحی اولیه برای آنتن فرکتالی مربعی با پلاریزاسیون دایروی71
3-8- طراحی نهایی برای آنتن فرکتالی مربعی با پلاریزاسیون دایروی73
فصل چهارم : طراحی و شبیه سازی آنتن فرکتالی چندبانده
4-1- مقدمه80
4-2- طراحی و شبیه سازی آنتن مایکرواستریپ ساده80
4-2-2- نتایج شبیه سازی.. 81
4-4- پارامترهای طراحی آنتن مایکرواستریپ چندبانده85
4-5-86
4-6- نتیجه گیری.. 92
منابع.. 93
مقدمه

به طور کلی با مشاهده طبیعت اطراف با بعضی از هندسه­های خودمتشابهی برخورد می­کنیم که از آنها می­توان به هندسه های فرکتالی یاد کرد. برای مثال، می توان به ساختار فرکتالی شاخه درختان، چشم انداز واقعی طبیعت غروب های خورشید، زمین های ناهموار، موج های روی دریاچه، خط ساحل، توپوگرافی بستر دریا و گیاهان و کوه ها اشکال مختلف ابرها اشاره کرد.

2-11-2- آنتن فرکتالی سرپینسکی کوتاه شده صفحه ای. 56
2-11-3- آنتن صفحه ای پارانی. 56
فصل سوم :  آنتن فرکتالی مربعی
3-1- مقدمه 62
3-2- بررسی خاصیت چندبانده بودن ساختار فرکتالی مربعی62
3-3- آنتن فرکتالی چندبانده 64
3-4- ساختار فرکتالی مربعی66
3-5- تغذیه با خط مایکرواستریپ هم صفحه 67
3-6- پلاریزاسیون دایروی در آنتن های مایکرو استریپ مربعی68
3-6-1- آنتن فرکتالی مربعی با پلاریزاسیون دایروی. 70
3-7- طراحی اولیه برای آنتن فرکتالی مربعی با پلاریزاسیون دایروی71
3-8- طراحی نهایی برای آنتن فرکتالی مربعی با پلاریزاسیون دایروی73
فصل چهارم : طراحی و شبیه سازی آنتن فرکتالی چندبانده
4-1- مقدمه80
4-2- طراحی و شبیه سازی آنتن مایکرواستریپ ساده80
4-2-2- نتایج شبیه سازی.. 81
4-4- پارامترهای طراحی آنتن مایکرواستریپ چندبانده85
4-5-86
4-6- نتیجه گیری.. 92
منابع.. 93
مقدمه
به طور کلی با مشاهده طبیعت اطراف با بعضی از هندسه­های خودمتشابهی برخورد می­کنیم که از آنها می­توان به هندسه های فرکتالی یاد کرد. برای مثال، می توان به ساختار فرکتالی شاخه درختان، چشم انداز واقعی طبیعت غروب های خورشید، زمین های ناهموار، موج های روی دریاچه، خط ساحل، توپوگرافی بستر دریا و گیاهان و کوه ها اشکال مختلف ابرها اشاره کرد.
اولین بار ساختارهای فرکتالی توسط بنویت مندلبرت[1] در سال 1975 معرفی شدند، که این ساختارها دارای اشکالی بودند، که هر بخش از آنها ویژگی های کل ساختار را در یک مقیاس کوچکتر دارا بود. این تعریف یک خاصیت مهم این ساختارها را معرفی می کرد، که آن وجود طول نامحدود در حجم محدودی از این ساختارها بود. شکل (1-1) چند نمونه از ساختارهای فرکتالی ساده در طبیعت پیرامون ما را نشان می دهد، که مربوط به ساقه کاج، درخت و چشم انداز طبیعت  می باشد. همان طور که در شکل های زیر مشاهده می کنید هر قسمت از این ساختارها از نظر خواص هندسی، همانند کل ساختار می باشند.
شکل 1-1 : چند نمونه ساختار فرکتالی
امروزه از هندسه­های فرکتالی در علوم زیادی استفاده می­شود. بدون شک یکی از شاخه­هایی که هندسه فرکتالی در آنها تأثیر زیادی گذاشته است، الکترومغناطیس و انتشار امواج است. وجود خواص ذاتی هندسه­های فرکتالی، باعث ایجاد ویژگی­های مناسبی در تشعشع­کننده­ها، منعکس­کننده ها و آنتن­ها می­گردد که باعث می­شود این ادوات عملکرد بهتری را در محیط داشته باشند.
در این پایان­نامه انواع ساختارهای فرکتالی به عنوان یک آنتن بررسی می­شوند و خواص انتشاری این ساختارها به صورت مجزا مورد بررسی قرار می­گیرد. به طور کلی ساختارهای فرکتالی زیادی را می­توان جهت طراحی آنتن به کار برد.
در اینجا ما تمامی این ساختارها را در چند دسته کلی تقسیم می­کنیم و خواص هر دسته را به تفصیل بیان می کنیم. ساختارهای فرکتالی که معمولاً در طراحی آنتن ها مورد استفاده قرار می­گیرند به صورت قطعی[2] می­باشند. به عبارت دیگر کلیه ساختارهای فرکتالی که در اینجا مورد بررسی قرار می­گیرند خاصیت تصادفی نداشته و از یک رابطه جبری پیروی می­کنند. به طوری که جهت ایجاد هر شکل فرکتالی

 

اولین بار ساختارهای فرکتالی توسط بنویت مندلبرت[1] در سال 1975 معرفی شدند، که این ساختارها دارای اشکالی بودند، که هر بخش از آنها ویژگی های کل ساختار را در یک مقیاس کوچکتر دارا بود. این تعریف یک خاصیت مهم این ساختارها را معرفی می کرد، که آن وجود طول نامحدود در حجم محدودی از این ساختارها بود. شکل (1-1) چند نمونه از ساختارهای فرکتالی ساده در طبیعت پیرامون ما را نشان می دهد، که مربوط به ساقه کاج، درخت و چشم انداز طبیعت  می باشد. همان طور که در شکل های زیر مشاهده می کنید هر قسمت از این ساختارها از نظر خواص هندسی، همانند کل ساختار می باشند.
شکل 1-1 : چند نمونه ساختار فرکتالی

امروزه از هندسه­های فرکتالی در علوم زیادی استفاده می­شود. بدون شک یکی از شاخه­هایی که هندسه فرکتالی در آنها تأثیر زیادی گذاشته است، الکترومغناطیس و انتشار امواج است. وجود خواص ذاتی هندسه­های فرکتالی، باعث ایجاد ویژگی­های مناسبی در تشعشع­کننده­ها، منعکس­کننده ها و آنتن­ها می­گردد که باعث می­شود این 

این مطلب را هم بخوانید :

این مطلب را هم بخوانید :

ادوات عملکرد بهتری را در محیط داشته باشند.

در این پایان­نامه انواع ساختارهای فرکتالی به عنوان یک آنتن بررسی می­شوند و خواص انتشاری این ساختارها به صورت مجزا مورد بررسی قرار می­گیرد. به طور کلی ساختارهای فرکتالی زیادی را می­توان جهت طراحی آنتن به کار برد.
در اینجا ما تمامی این ساختارها را در چند دسته کلی تقسیم می­کنیم و خواص هر دسته را به تفصیل بیان می کنیم. ساختارهای فرکتالی که معمولاً در طراحی آنتن ها مورد استفاده قرار می­گیرند به صورت قطعی[2] می­باشند. به عبارت دیگر کلیه ساختارهای فرکتالی که در اینجا مورد بررسی قرار می­گیرند خاصیت تصادفی نداشته و از یک رابطه جبری پیروی می­کنند. به طوری که جهت ایجاد هر شکل فرکتالی

موضوعات: بدون موضوع  لینک ثابت
[سه شنبه 1399-07-01] [ 12:19:00 ب.ظ ]




2-4-4 آنتن های درختی با شاخه مرکزی.. 28
2-4-5 آنتن درختی تک قطبی با بارگزاری راکتیو. 29
2-5- آنتن های سه بعدی هیلبرت… 34
2-5-1 ساختارهای هیلبرت سه بعدی معمولی.. 35
2-5-1-1 آنتن هیلبرت سه بعدی معمولی در فضای آزاد. 35
2-5-1-2 آنتن هیلبرت سه بعدی معمولی در داخل استوانه دی الکتریک… 37
2-5-2 آنتن هیلبرت سه بعدی معکوس…. 38
فصل سوم : آنتن های مایکرو استریپ
3-1  مقدمه. 41
3-2 تعریف آنتن های مایکرو استریپ… 41
3-3  ویژگی های آنتن های مایكرو استریپ… 43
3-4  اصول اساسی عملكرد آنتن های مایكرواستریپ… 44
3-5 میدان های تشعشعی.. 46
3-6 روش های تغذیه در آنتن های مایكرواستریپ… 46
3-6-1 تغذیه پروب كواكسیال. 46
3-6-2 تغذیه بروش خط مایكرو استریپی.. 47
3-6-3 تغذیه با کوپلینگ از روزنه. 48
3-6-4- تغذیه با استفاده از کوپلینگ الکترومغناطیسی مجاورتی.. 49
3-7  آنتن های مایکرواستریپ مجتمع. 51
3-8 روش های کاهش ابعاد آنتن مایکرواستریپ… 52
3-8-1 استفاده از اتصال کوتاه برای زیر لایه های نازک… 52
3-8-2 شکاف گذاری در صفحه ی تشعشعی آنتن.. 52
3-8-3 شکاف گذاری در صفحه زمین.. 53
3-8-4 استفاده از آنتن L شکل معکوس  (PIL) 54
3-8-6 استفاده از بارگذاری دی الکتریک… 56
فصل چهارم :
4-1 مقدمه. 58
4-2 طراحی و شبیه سازی آنتن مایکرو استریپ ساده برای کاربرد 5 گیگاه هرتز. 58
4-2-1 پارامترهای طراحی آنتن.. 59
4-3 طراحی و شبیهسازی آنتن مایکرواستریپ کوچک شده 60
4-3-1 پارامترهای طراحی آنتن.. 60
4-3-2 کاهش ابعاد آنتن.. 60
4-3-2 تحلیل آنتن.. 61
4-4 نتایج شبیه سازی.. 62
فصل پنجم : نتایج و پیشنهادات
5-1 نتیجه گیری.. 67
5-2 پیشنهادات… 67
منابع. 68

مقدمه
به طور کلی با مشاهده طبیعت اطراف با بعضی از هندسه­های خودمتشابهی برخورد می­کنیم که از آنها می­توان به هندسه های فرکتالی یاد کرد. برای مثال، می توان به ساختار فرکتالی شاخه درختان، چشم انداز واقعی طبیعت غروب های خورشید، زمین های ناهموار، موج های روی دریاچه، خط ساحل، توپوگرافی بستر دریا و گیاهان و کوه ها اشکال مختلف ابرها اشاره کرد.
اولین بار ساختارهای فرکتالی توسط بنویت مندلبرت[1] در سال 1975 معرفی شدند، که این ساختارها دارای اشکالی بودند، که هر بخش از آنها ویژگی های کل ساختار را در یک مقیاس کوچکتر دارا بود. این تعریف یک خاصیت مهم این ساختارها را معرفی می کرد، که آن وجود طول نامحدود در حجم محدودی از این ساختارها بود. شکل (1-1) چند نمونه از ساختارهای فرکتالی ساده در طبیعت پیرامون ما را نشان می دهد، که مربوط به ساقه کاج، درخت و چشم انداز طبیعت  می باشد. همان طور که در شکل های زیر مشاهده می کنید هر قسمت از این ساختارها از نظر خواص هندسی، همانند کل ساختار می باشند.

2-4-4 آنتن های درختی با شاخه مرکزی.. 28
2-4-5 آنتن درختی تک قطبی با بارگزاری راکتیو. 29
2-5- آنتن های سه بعدی هیلبرت… 34
2-5-1 ساختارهای هیلبرت سه بعدی معمولی.. 35
2-5-1-1 آنتن هیلبرت سه بعدی معمولی در فضای آزاد. 35
2-5-1-2 آنتن هیلبرت سه بعدی معمولی در داخل استوانه دی الکتریک… 37
2-5-2 آنتن هیلبرت سه بعدی معکوس…. 38
فصل سوم : آنتن های مایکرو استریپ
3-1  مقدمه. 41
3-2 تعریف آنتن های مایکرو استریپ… 41
3-3  ویژگی های آنتن های مایكرو استریپ… 43
3-4  اصول اساسی عملكرد آنتن های مایكرواستریپ… 44
3-5 میدان های تشعشعی.. 46
3-6 روش های تغذیه در آنتن های مایكرواستریپ… 46
3-6-1 تغذیه پروب كواكسیال. 46
3-6-2 تغذیه بروش خط مایكرو استریپی.. 47
3-6-3 تغذیه با کوپلینگ از روزنه. 48
3-6-4- تغذیه با استفاده از کوپلینگ الکترومغناطیسی مجاورتی.. 49
3-7  آنتن های مایکرواستریپ مجتمع. 51
3-8 روش های کاهش ابعاد آنتن مایکرواستریپ… 52
3-8-1 استفاده از اتصال کوتاه برای زیر لایه های نازک… 52
3-8-2 شکاف گذاری در صفحه ی تشعشعی آنتن.. 52
3-8-3 شکاف گذاری در صفحه زمین.. 53
3-8-4 استفاده از آنتن L شکل معکوس  (PIL) 54
3-8-6 استفاده از بارگذاری دی الکتریک… 56
فصل چهارم :
4-1 مقدمه. 58
4-2 طراحی و شبیه سازی آنتن مایکرو استریپ ساده برای کاربرد 5 گیگاه هرتز. 58
4-2-1 پارامترهای طراحی آنتن.. 59
4-3 طراحی و شبیهسازی آنتن مایکرواستریپ کوچک شده 60
4-3-1 پارامترهای طراحی آنتن.. 60
4-3-2 کاهش ابعاد آنتن.. 60
4-3-2 تحلیل آنتن.. 61
4-4 نتایج شبیه سازی.. 62
فصل پنجم : نتایج و پیشنهادات
5-1 نتیجه گیری.. 67
5-2 پیشنهادات… 67
منابع. 68

مقدمه
به طور کلی با مشاهده طبیعت اطراف با بعضی از هندسه­های خودمتشابهی برخورد می­کنیم که از آنها می­توان به هندسه های فرکتالی یاد کرد. برای مثال، می توان به ساختار فرکتالی شاخه درختان، چشم انداز واقعی طبیعت غروب های خورشید، زمین های ناهموار، موج های روی دریاچه، خط ساحل، توپوگرافی بستر دریا و گیاهان و کوه ها اشکال مختلف ابرها اشاره کرد.
اولین بار ساختارهای فرکتالی توسط بنویت مندلبرت[1] در سال 1975 معرفی شدند، که این ساختارها دارای اشکالی بودند، که هر بخش از آنها ویژگی های کل ساختار را در یک مقیاس کوچکتر دارا بود. این تعریف یک خاصیت مهم این ساختارها را معرفی می کرد، که آن وجود طول نامحدود در حجم محدودی از این ساختارها بود. شکل (1-1) چند نمونه از ساختارهای فرکتالی ساده در طبیعت پیرامون ما را نشان می دهد، که مربوط به ساقه کاج، درخت و چشم انداز طبیعت  می باشد. همان طور که در شکل های زیر مشاهده می کنید هر قسمت از این ساختارها از نظر خواص هندسی، همانند کل ساختار می باشند.
شکل (1-1) : چند نمونه ساختار فرکتالی
امروزه از هندسه­های فرکتالی در علوم زیادی استفاده می­شود. بدون شک یکی از شاخه­هایی که هندسه فرکتالی در آنها تأثیر زیادی گذاشته است، الکترومغناطیس و انتشار امواج است. وجود خواص ذاتی هندسه­های فرکتالی، باعث ایجاد ویژگی­های مناسبی در تشعشع­کننده­ها، منعکس­کننده ها و آنتن­ها می­گردد که باعث می­شود این ادوات عملکرد بهتری را در محیط داشته باشند.
در این پایان­نامه انواع ساختارهای فرکتالی به عنوان یک آنتن بررسی می­شوند و خواص انتشاری این ساختارها به صورت مجزا مورد بررسی قرار می­گیرد. به طور کلی ساختارهای فرکتالی زیادی را می­توان جهت طراحی آنتن به کار برد.
در اینجا ما تمامی این ساختارها را در چند دسته کلی تقسیم می­کنیم و خواص هر دسته را به تفصیل بیان می کنیم. ساختارهای فرکتالی که معمولاً در طراحی آنتن ها مورد استفاده قرار می­گیرند به صورت قطعی[2] می­باشند. به عبارت دیگر کلیه ساختارهای فرکتالی که در اینجا مورد بررسی قرار می­گیرند خاصیت تصادفی نداشته و از یک رابطه جبری پیروی می­کنند. به طوری که جهت ایجاد هر شکل فرکتالی می­توان از یک روش تکرارشونده مشخص استفاده کرد: نکته دیگر که در استفاده از هندسه فرکتالی جهت طراحی آنتن باید در نظر گرفت، روند تکرار هندسه فرکتالی پس از چندین تکرار می­باشد. با توجه به اینکه در ساختارهای فرکتالی یک روند جبری به صورت تکرارشونده جهت انجام یک شکل فرکتالی استفاده می­شود، باید توجه داشت که با توجه به محدودیت­های موجود در ساخت آنتن، نمی­توان تعداد تکرارها را از یک حد معینی افزایش داد. نقطه قطع تکرارها در ساختارهای مختلف فرکتالی، متفاوت می­باشد و نمی­توان قانون کلی برای آن بیان نمود. باید توجه داشت که خواص آنتن­های فرکتالی با افزایش تعداد تکرارهای ساختار از یک حد معین، دیگر تغییر چندانی نکرده و خواص به حالت مشخصی همگرا می­شوند.
به طور کلی آنتن های فرکتالی با استفاده از روش ممان[3] بررسی می شوند. در این فصل کلیه نتایج براساس شبیه سازی با استفاده از روش ممان بیان گردیده است.
شکل (1-2)، دسته بندی کلی آنتن های فرکتالی را نشان می دهد. آنتن های فرکتالی به سه ساختار کلی، آنتن های حلقوی، آنتن های دوقطبی و آنتن های فرکتالی چندبانده تقسیم بندی شده اند. آنتن های فرکتالی دوقطبی، آنتن های سیمی می باشند که در این شکل فقط یک بازوی آن نشان داده شده است، و بازوی دیگر به صورت قرینه این بازو نسبت به منبع تغذیه می باشد. از جمله مزایای آنتن­های فرکتالی دوقطبی در حالت کلی، کم شدن ارتفاع آنتن در مقایسه با آنتن دوقطبی معمولی، برای مقدار امپدانس ورودی ثابت می­باشد. ساختارهای دوقطبی که در شکل زیر به آنها اشاره شده است، ساختار درختی[4] و ساختار کخ[5] می­باشند. دسته دوم آنتن­های فرکتالی، آنتن­های حلقوی می­باشند که استفاده از ساختارفرکتالی در این آنتن­ها سبب کاهش ابعاد آنتن و افزایش امپدانس ورودی می­گردد.
شکل (1-2) : دسته بندی کلی آنتن های فرکتالی
دسته سوم آنتن­های فرکتالی که از نظر کاربرد و تنوع نسبت به دو دسته قبلی معروفیت بیشتری دارند، آنتن­های فرکتالی چندبانده می­باشند. در این آنتن­ها وجود چندین بخش یکسان در مقیاس­های مختلف سبب می شود که آنتن در چندین باند فرکانسی مختلف، عملکرد یکسانی از لحاظ تشعشعی داشته باشد. به این آنتن­ها اصطلاحاً آنتن های خودمتشابه[6] می­گویند. شکل فوق یک نمونه از این آنتن­ها را که به آنتن­های سرپینسکی[7] معروف هستند، نشان می­دهد.
برای کسب اطلاعات بیشتر در خصوص ساختارهای فرکتالی مختلف می توان به مراجع [1] و [2] مراجعه کرد. همچنین در خصوص کاربرد ساختارهای فرکتالی در آنتن­ها می­توان به مرجع [3] مراجعه کرد.

 

شکل (1-1) : چند نمونه ساختار فرکتالی
امروزه از هندسه­های فرکتالی در علوم زیادی استفاده می­شود. بدون شک یکی از شاخه­هایی که هندسه فرکتالی در آنها تأثیر زیادی گذاشته است، الکترومغناطیس و انتشار امواج است. وجود خواص ذاتی هندسه­های فرکتالی، باعث ایجاد ویژگی­های مناسبی در تشعشع­کننده­ها، منعکس­کننده ها و آنتن­ها می­گردد که باعث می­شود این ادوات عملکرد بهتری را در محیط داشته باشند.
در این پایان­نامه انواع ساختارهای فرکتالی به عنوان یک آنتن بررسی می­شوند و خواص انتشاری این ساختارها به صورت مجزا مورد بررسی قرار می­گیرد. به طور کلی ساختارهای فرکتالی زیادی را می­توان جهت طراحی آنتن به کار برد.
در اینجا ما تمامی این ساختارها را در چند دسته کلی تقسیم می­کنیم و خواص هر دسته را به تفصیل بیان می کنیم. ساختارهای فرکتالی که معمولاً در طراحی آنتن ها مورد استفاده قرار می­گیرند به صورت قطعی[2] می­باشند. به عبارت دیگر کلیه ساختارهای فرکتالی که در اینجا مورد بررسی قرار می­گیرند خاصیت تصادفی نداشته و از یک رابطه جبری پیروی می­کنند. به طوری که جهت ایجاد هر شکل فرکتالی می­توان از یک روش تکرارشونده مشخص استفاده کرد: نکته دیگر که در استفاده از هندسه فرکتالی جهت طراحی آنتن باید در نظر گرفت، روند تکرار هندسه فرکتالی پس از چندین تکرار می­باشد. با توجه به اینکه در ساختارهای فرکتالی یک روند جبری به صورت تکرارشونده جهت انجام یک شکل فرکتالی استفاده می­شود، باید توجه داشت که با توجه به محدودیت­های موجود در ساخت آنتن، نمی­توان تعداد تکرارها را از یک حد معینی افزایش داد. نقطه قطع تکرارها در ساختارهای مختلف فرکتالی، متفاوت می­باشد و نمی­توان قانون کلی برای آن بیان نمود. باید توجه داشت که خواص آنتن­های فرکتالی با افزایش تعداد تکرارهای ساختار از یک حد معین، دیگر تغییر چندانی نکرده و خواص به حالت مشخصی همگرا می­شوند.

این مطلب را هم بخوانید :

این مطلب را هم بخوانید :
 
 

به طور کلی آنتن های فرکتالی با استفاده از روش ممان[3] بررسی می شوند. در این فصل کلیه نتایج براساس شبیه سازی با استفاده از روش ممان بیان گردیده است.
شکل (1-2)، دسته بندی کلی آنتن های فرکتالی را نشان می دهد. آنتن های فرکتالی به سه ساختار کلی، آنتن های حلقوی، آنتن های دوقطبی و آنتن های فرکتالی چندبانده تقسیم بندی شده اند. آنتن های فرکتالی دوقطبی، آنتن های سیمی می باشند که در این شکل فقط یک بازوی آن نشان داده شده است، و بازوی دیگر به صورت قرینه این بازو نسبت به منبع تغذیه می باشد. از جمله مزایای آنتن­های فرکتالی دوقطبی در حالت کلی، کم شدن ارتفاع آنتن در مقایسه با آنتن دوقطبی معمولی، برای مقدار امپدانس ورودی ثابت می­باشد. ساختارهای دوقطبی که در شکل زیر به آنها اشاره شده است، ساختار درختی[4] و ساختار کخ[5] می­باشند. دسته دوم آنتن­های فرکتالی، آنتن­های حلقوی می­باشند که استفاده از ساختارفرکتالی در این آنتن­ها سبب کاهش ابعاد آنتن و افزایش امپدانس ورودی می­گردد.
شکل (1-2) : دسته بندی کلی آنتن های فرکتالی
دسته سوم آنتن­های فرکتالی که از نظر کاربرد و تنوع نسبت به دو دسته قبلی معروفیت بیشتری دارند، آنتن­های فرکتالی چندبانده می­باشند. در این آنتن­ها وجود چندین بخش یکسان در مقیاس­های مختلف سبب می شود که آنتن در چندین باند فرکانسی مختلف، عملکرد یکسانی از لحاظ تشعشعی داشته باشد. به این آنتن­ها اصطلاحاً آنتن های خودمتشابه[6] می­گویند. شکل فوق یک نمونه از این آنتن­ها را که به آنتن­های سرپینسکی[7] معروف هستند، نشان می­دهد.
برای کسب اطلاعات بیشتر در خصوص ساختارهای فرکتالی مختلف می توان به مراجع [1] و [2] مراجعه کرد. همچنین در خصوص کاربرد ساختارهای فرکتالی در آنتن­ها می­توان به مرجع [3] مراجعه کرد.

موضوعات: بدون موضوع  لینک ثابت
 [ 12:18:00 ب.ظ ]




2-2-1- گونه‌های وحشی………………………………………………………… 9

2-2-2-گونه های زراعی……………………………………………………….. 10

2-3- مناطق پراکنش جنس آژیلوپس…………………………………………. 10

2-4- مناطق پراکنش گونه Ae.crassa…………………………………………

2-5- طبقه بندی گونه Ae.crassa……………………………………………..

2-6- تنوع ژنتیکی و اهمیت شناخت آن…………………………………….. 12

2-7- منشاء تنوع ژنتیکی…………………………………………………………..13

2-8- اهمیت بررسی تنوع ژنتیکی………………………………………….. 13

2-9- کاربردهای بررسی تنوع ژنتیکی………………………………………. 14

2-9-1- بررسی­های فیلوژنتیکی……………………………………………….. 14

2-9-2- ژنتیک جمعیت………………………………………………………….. 14

2-9-3-مدیریت گیاهان وحشی………………………………………………… 14

2-9-4- مدیریت منابع ژنتیکی………………………………………………….. 15

2-9-4-1- کلکسیون های ذخائر ژنتیک گیاهی………………………………. 15

2-9-4-1- کنترل بیماری­های گیاهی…………………………………………….. 15

2-10- روش های ارزیابی تنوع ژنتیکی……………………………………….. 16

2-11- نشانگرهای ژنتیکی……………………………………………………… 16

2-11-1- نشانگرهای مورفولوژیک………………………………………………. 16

2-11-2- مزایا و معایب نشانگرهای مورفولوژیک……………………………… 17

2-11-3- نشانگرهای مولکولی………………………………………………….. 18

2-11-3-1- خصوصیات مناسب یک نشانگر مولکولی…………………………. 19

2-11-3- 2-اهمیت نشانگرهای مولکولی DNA………………………………..

2-11-3-3- نشانگرهای بیوشیمیایی………………………………………….. 20

2-11-3-4- نشانگرهای مبتنی بر DNA…………………………………………

2-11-3-5- نشانگرهای DNA  غیر مبتنی بر PCR……………………………

2-11-3-6- نشانگرهای DNA  مبتنی بر PCR………………………………….

2-11-3-7-  نشانگرهای DNA  مبتنی بر PCR  هدفمند و توالی یابی……..22

2-12- نشانگرهای مولکولی ISSR……………………………………………

2-2-1- گونه‌های وحشی………………………………………………………… 9

2-2-2-گونه های زراعی……………………………………………………….. 10

2-3- مناطق پراکنش جنس آژیلوپس…………………………………………. 10

2-4- مناطق پراکنش گونه Ae.crassa…………………………………………

2-5- طبقه بندی گونه Ae.crassa……………………………………………..

2-6- تنوع ژنتیکی و اهمیت شناخت آن…………………………………….. 12

2-7- منشاء تنوع ژنتیکی…………………………………………………………..13

2-8- اهمیت بررسی تنوع ژنتیکی………………………………………….. 13

2-9- کاربردهای بررسی تنوع ژنتیکی………………………………………. 14

2-9-1- بررسی­های فیلوژنتیکی……………………………………………….. 14

2-9-2- ژنتیک جمعیت………………………………………………………….. 14

2-9-3-مدیریت گیاهان وحشی………………………………………………… 14

2-9-4- مدیریت منابع ژنتیکی………………………………………………….. 15

2-9-4-1- کلکسیون های ذخائر ژنتیک گیاهی………………………………. 15

2-9-4-1- کنترل بیماری­های گیاهی…………………………………………….. 15

2-10- روش های ارزیابی تنوع ژنتیکی……………………………………….. 16

2-11- نشانگرهای ژنتیکی……………………………………………………… 16

2-11-1- نشانگرهای مورفولوژیک………………………………………………. 16

2-11-2- مزایا و معایب نشانگرهای مورفولوژیک……………………………… 17

2-11-3- نشانگرهای مولکولی………………………………………………….. 18

2-11-3-1- خصوصیات مناسب یک نشانگر مولکولی…………………………. 19

2-11-3- 2-اهمیت نشانگرهای مولکولی DNA………………………………..

2-11-3-3- نشانگرهای بیوشیمیایی………………………………………….. 20

2-11-3-4- نشانگرهای مبتنی بر DNA…………………………………………

2-11-3-5- نشانگرهای DNA  غیر مبتنی بر PCR……………………………

2-11-3-6- نشانگرهای DNA  مبتنی بر PCR………………………………….

2-11-3-7-  نشانگرهای DNA  مبتنی بر PCR  هدفمند و توالی یابی……..22

2-12- نشانگرهای مولکولی ISSR……………………………………………

2-12-1- علل ایجاد چندشکلی حاصل از نشانگر مولکولی ISSR…………..

2-12-1-1- نمونه DNA………………………………………………………….

2-12-1-2- ماهیت آغازگر………………………………………………………… 25

2-12-1-3- روش مورد استفاده برای تشخیص باندها………………………… 26

2-12-2- مزایای نشانگرهای ISSR………………………………………………

2-12-2-1- تکرارپذیری بسیار بالا……………………………………………….. 26

2-12-2-2- دقت بالا………………………………………………………………. 27

2-12-2-3- تنوع بالا……………………………………………………………….. 27

2-12-2-4-  هزینه پایین………………………………………………………….. 27

2-12-2-5- سرعت و سهولت اجرا………………………………………………. 27

2-12-3- معایب نشانگرهای ISSR……………………………………………….

2-12- 4- انواع نشانگرهای ISSR………………………………………………..

2-12-4-1-تکنیک MP-PCR ……………………………………………………

2-12-4-2- تکنیک F-ISSR……………………………………………………..

2-12-5-کاربرد نشانگرهای مولکولی ISSR…………………………………..

2-12-5-1- انگشت­نگاری ژنومی………………………………………………… 29

2-12-5-2-   مطالعات تنوع ژنتیکی و تجزیه و تحلیل فیلوژنتیکی……………29

2-12-5-3-  نقشه­یابی ژنتیکی………………………………………………… 30

2-12-5-4-  نشانمند کردن ژن و انتخاب به کمک نشانگر…………………….. 30

2-12-5-5- مشخص کردن فراوانی توالی­های ریزماهواره­ای………………….. 30

2-12-5-6- کاربرد نشانگرهای  ISSR در شناسایی و رده­بندی گونه ها……31

2-13- تجزیه و تحلیل تنوع ژنتیکی……………………………………………… 31

2-14- تخمین فاصله ژنتیکی……………………………………………………. 32

2-14- 1- روش گروهبندی افراد یا جمعیت ها………………………………….. 32

2-14-1-1-تجزیه خوشه ای……………………………………………………… 33

2-14-1-2- تجزیه به مختصات اصلی (PCoA)………………………………….. 34

2-14-2-  معیارهای سودمندی نشانگرها………………………………………. 34

2-14-2-1- محتوی اطلاعات چندشکلی……………………………………….. 34

2-14-2-2-  احتمال همسانی…………………………………………………… 35

2-14-2-3-  قدرت تفکیک………………………………………………………….. 35

2-15- مروری بر مطالعات ژنتیکی  و مورفولوژی انجام شده روی گونه های آژیلوپس….35

فصل سوم (مواد و روشها)……………………………………………………….. 40

3 -1- مواد گیاهی………………………………………………………………… 41

3-2- آغازگرها………………………………………………………………………. 43

3-3-  مکان و زمان انجام آزمایش مولکولی…………………………………….. 43

3-4- عملیات زراعی……………………………………………………………….. 44

3 -4-1- مشخصات جغرافیایی محل انجام آزمایش مزرعه‌ای…………………. 44

3 -4- 2- طرح آزمایشی و مراحل اجرای آن………………………………………. 44

3 -5- استخراج DNA ژنومی………………………………………………………. 45

3-6- تعیین کمیت نمونه های DNA  ژنومی…………………………………….. 47

3 -7- تعیین کیفیت نمونه های DNA ژنومی……………………………………. 48

3 -8- روش تهیه آگاروز 8/0و 5/1 درصد برای تعیین کمیت وکیفیت و تفکیک قطعات تکثیر شده…..48

3-9- آماده سازی نمونه ها واجرای الکتروفورز ژل آگاروز………………………… 49

3-10- اجزای واکنش زنجیره ای پلیمراز…………………………………………… 50

3-11- سیکل حرارتی و مراحل واکنش زنجیره­ای پلیمراز……………………….. 50

3 -12-توان و زمان مورد نیاز برای الکتروفورز محصول PCR………………………..

3 -13- مواد تشکیل دهنده بافرTE………………………………………………….

3-14- تهیه بافر  TAE10X…………………………………………………………..

3 -15- اتیدیوم بروماید…………………………………………………………….. 53

3 -16- رنگ بارگذاری……………………………………………………………… 53

3 -17- مراحل رنگ آمیزی تا ظاهرسازی قطعات تکثیر شده…………………….53

3-18- تجزیه وتحلیل داده ها………………………………………………………… 54

3-18-1- امتیازبندی باندهای حاصل از داده های مولکولی……………………….54

3-18-2- تجزیه خوشه ای و آنالیز مولکولی…………………………………………54

فصل چهارم(بحث و نتیجه­گیری)…………………………………………………….55

4-1- نتایج استخراج DNA ژنومی…………………………………………………. 56

4 -2- نتایج واکنش زنجیره­ای پلیمراز……………………………………………… 56

4 -3- محاسبه چندشکلی نشانگرهای ISSR…………………………………….

4-4- محاسبه محتوای اطلاعات چندشکلی نشانگرهای ISSR…………………

4-5- محاسبه شاخص نشانگر(MI) نشانگرهای ISSR…………………………

4 -5- محاسبه ضرایب همبستگی کوفنتیک…………………………………….. 61

4-6- ترسیم دندروگرام جمعیت­های Ae.crassa…………………………………….

4-7- تجزیه به مختصات اصلی با استفاده از نرم­افزار DARWin  وترسیم نمودار سه بعدی جمعیت­ها با نرم ­افزار Minitab

4-8- محاسبه فاصله ژنتیکی درون و بین جمعیت­های Ae.crassa……………..

4-9- محاسبه ماتریس فاصله و تشابه ژنتیکی شاخص Nei ………………….

4 -10- میزان آلل­های چندشکل در جمعیت­های Ae.crassa…………………….

4-11- محاسبه شاخص­های ژنتیکی در جمعیت­های Ae.crassa…………………

4 -12- تجزیه واریانس مولکولی………………………………………………….. 71

4-13- بررسی صفات مورفولوژی…………………………………………………. 72

4-13-1- همبستگی ساده فنوتیپی……………………………………………… 72

4-13-2- تجزیه کلاستر (خوشه­ای)…………………………………………………74

4-13-3- تجزیه به مولفه های اصلی……………………………………………… 76

4 -13-4- تجزیه علیت (مسیر)…………………………………………………….. 78

4-14- نتیجه­گیری کلی مولکولی…………………………………………………. 80

4-15- نتیجه­گیری کلی مورفولوژیکی……………………………………………….81

4-15-1 پیشنهادات…………………………………………………………………… 83

منابع…..……………………………………………………………………………………84

چکیده:

گیاه Aegilops crassa ،دارای دو سیتوتیپ تتراپلوئید وهگزاپلوئید با ژنوم ( 2n=2x=28 McrMcrDcr1Dcr1 ) و (2n=6x=42 McrMcrDcr1Dcr1 Dcr2Dcr2  ) است. این گیاه  یکساله و متعلق به خانواده گرامینه و طایفه Triticeae می باشد. بررسی تنوع ژنتیکی در ژرم­پلاسم گیاهی پیش­نیاز هر برنامه­ی اصلاحی یا حفاظتی گیاهان است. این تحقیق به منظور بررسی تنوع ژنتیکی بین 16 جمعیت Ae.crassa با استفاده از 10 آغازگر ISSR انجام شد. DNA ژنومی از گونه­ها در مرحله­ی دو تا سه برگی به روش CTAB با اندکی تغییرات استخراج و نتایج تکثیر با آغازگرهای مختلف روی ژل آگاروز 5/1 درصد مشاهده شدند. باندهای تکثیر شده به صورت حضور باند (یک) و عدم حضور باند (صفر) امتیازدهی و با نرم­افزارهای مولکولی و آماری، تجزیه و تحلیل داده­ها  انجام گرفت. همچنین این آزمایش در قالب طرح آزمایشی اگمنت (در 3 بلوک) در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه ایلام انجام شد. از میان نمونه‌های ارزیابی شده سه نمونه که دارای بذر بیشتری بودند به عنوان شاهد استفاده شدند. نتایج تکثیر DNA ژنومی با استفاده از آغازگرهای ISSR، در مجموع 105 آلل تولید کرد که از این تعداد 86 آلل (9/81 درصد)، به عنوان آلل چندشکل تشخیص داده شد. اندازه آلل­های تکثیر شده از 190 (آغازگر UBC840) تا 1500 جفت باز (آغازگر 12،14) بود. محتوای اطلاعات چندشکلی از 17/0 در آغازگر UBC842 تا 34/0 برای آغازگر 12 متفاوت بود. همچنین با استفاده از نشانگر ISSR به ترتیب بیشترین و کم­ترین درصد باندهای چندشکل در جمعیت IUGB-00319 (05/39 درصد) و IUGB-01564 (48/10درصد) مشاهده گردید. جمعیت IUGB-00319 بالاترین شاخص تصحیح شده هتروژنی و میزان شاخص شانون را به خود اختصاص داد. آنالیز واریانس مولکولی نشان داد که سطح بیشتری از تنوع به درون جمعیت­ها (53 درصد) تعلق داشت، درحالی که (47 درصد) تنوع در بین جمعیت­ها مشاهده گردید. همچنین تجزیه خوشه ای داده‌ها با استفاده از ماتریس شاخص Nei با الگوریتم Nj انجام شد. دندروگرام بدست آمده جمعیت­ها را به سه گروه و زیر گروه­هایی تقسیم نمود و تا حدی عدم ارتباط بین تنوع مولکولی و تنوع جغرافیایی را نشان داد. نتایج این تحقیق نشان می­دهد که نشانگرهای ISSR برای ارزیابی میزان تنوع ژنتیکی در آژیلوپس کراسا مفید است.

فصل اول: مقدمه و اهداف

1-1- مقدمه

ایران یکی از غنی ترین مراکز دنیا از نظر ذخایر ژنتیکی گیاهی محسوب می‌شود. به عقیده گیاهشناسان ایرانی حدود 10 الی 12 هزار گونه گیاهی در ایران وجود دارد که آن را به عنوان یکی از غنی ترین مراکز تنوع ذخایر توارثی گیاهی در جهان ساخته است.گونه های وحشی به لحاظ داشتن ژن های مفید برای مقاومت به تنش های زنده و غیرزنده و گسترش سازگاری ژنتیکی در برابر تغییرات محیطی دارای اهمیت می‌باشند. برای استفاده از این منابع، اطلاع از ماهیت و  میزان تنوع موجود در ژرم‌پلاسم، از اهمیت ویژه‌ای برخوردار است [108] . بررسی تنوع ژنتیکی در گیاهان زراعی برای برنامه های اصلاحی و حفاظت از ذخایر توارثی، حیاتی بوده و اطلاع از سطح تنوع ژنتیکی در گونه گیاهی برای انتخاب والدین جهت رسیدن به هیبرید مناسب از اهمیت زیادی برخوردار است [109]. بررسی تنوع ژنتیکی همچنین از جنبه مدیریت موثر و حفظ منابع ژرم پلاسم دارای اهمیت می‌باشد [96]. روش‌هایی که برای تخمین تنوع ژنتیکی مورد استفاده قرار گرفته‌اند متفاوت می‌باشند. از جمله‌ی آن‌ها می توان ثبت شجره، خصوصیات مورفولوژیکی و نشانگرهای مولکولی را نام برد [41]. آگاهی از تنوع ژنتیکی ژرم‌پلاسم ها معیاری مناسب برای استفاده از آن‌ها در شناسایی و انتقال ژن‌ها در بهبود گیاهان زراعی می‌باشند [41]. تنوع ژنتیکی اساس بیشتر برنامه‌های اصلاحی بوده و انجام گزینش منوط به وجود تنوع ژنتیكی مطلوب از نظر ویژگیهای مورد بررسی می‌باشد [32]. مطالعه تنوع ژنتیكی فرآیندی است كه تفاوت یا شباهت گونه‌ها، جمعیت‌ها و یا افراد را با استفاده از روش‌ها و مدل‌های آماری خاص بر اساس صفات مورفولوژیك، اطلاعات شجره‌ای یا خصوصیات مولكولی افراد بیان می‌کنند [32]. تعیین سطح تنوع ژنتیکی یکی از مراحل اساسی در مدیریت مؤثر و استفاده از ذخایر ژنتیکی می‌‌‌‌‌‌‌‌‌‌باشد [96،23،7]. منابع ژنتیكی یا ذخایر توارثی به دلیل اهمیت فراوانی كه دارند یكی از ارزشمند ترین ثروت های ملی و منابع پایه ای در هر كشور محسوب می‌شوند [1]. یکی از عواقب اصلاح‌نباتات موفق، افزایش فرسایش یا کاهش منابع ژنتیکی گیاهی بوده که تحت برنامه انتخاب قرار گرفته‌اند. در سال های اخیر عوامل بسیار زیادی در فرسایش ژنتیکی و نابودی ذخایر ژرم‌پلاسم نقش داشته‌اند [16]. استفاده از واریته‌های اصلاح شده بجای واریته‌های بومی، اعمال روش‌های مدرن زراعی مانند استفاده از سموم علف‌کش، پیشرفت شهرها و مراکز صنعتی، مسکونی شدن زمین های زراعی و مرتعی، تغییر روش های کشت و سایر عواملی که منجر به فرسایش و انقراض مواد با ارزش می‌شوند که به‌طور مستقیم وغیر مستقیم در کشاورزی و اصلاح نباتات قابل استفاده هستند. بنابراین حفاظت و استفاده از منابع ژنتیکی گیاهی برای بقا و بهبود تولیدات زراعی ضروری بوده و به عنوان نیازی اساسی در توسعه پایدار و کاهش فقر محسوب می‌شود. تنوع ژنتیکی اساس اکثر برنامه های اصلاح نباتات می‌‌‌‌‌‌‌‌‌‌باشد [111،74،7]. موفقیت در اصلاح یک گیاه زراعی، در درجه اول به دسترسی تنوع ژنتیکی موجود در آن گیاه بستگی دارد، ضمن اینکه تنوع ژنتیکی یکی از ارکان اصلی کشاورزی پایدار است و وجود تنوع ژنتیکی در نظام‌های زراعی با درس گرفتن از طبیعت باید همواره مد نظر قرار گیرد. مدیریت و استفاده صحیح از تنوع موجود در ارقام محلی و خویشاوندان وحشی یک گونه گیاهی در اجرای برنامه‌های موثر اصلاحی بسیار مهم است. اولین قدم در اصلاح یک گیاه، شناسائی دقیق ساختار ژرم‌پلاسم آن گیاه است که این مطلب خود نمونه‌گیری منظم و دقیق از ژرم‌پلاسم را برای اهداف اصلاحی و حفاظتی امکان پذیر خواهد ساخت. کاهش تنوع علاوه بر کاهش بازده برنامه های اصلاحی، باعث یکنواختی ژنتیکی در مزارع و آسیب‌پذیری شدید محصولات کشاورزی در برابر آفات، بیماری‌ها و تنش‌های محیطی می‌گردد. خویشاوندان وحشی گیاهان، دربردارنده منابع ژنی با ارزش برای مقاومت به تنش‌های زنده و غیرزنده می باشند.

توده‌های وحشی و نژادهای بومی از مهم‌ترین منابع تنوع ژنتیکی در دسترس می‌باشند [26]. اهلی‌سازی جمعیت‌های برتر انتخاب شده از بین تعداد زیادی توده می‌تواند پیشرفت قابل توجهی در تأمین نیاز صنایع وابسته بدون نیاز به روش‌های پرهزینه و گران اصلاحی ایجاد نماید [26]. اهلی‌کردن، فرآیندی طولانی است، اما با انتخاب مناسب در شروع به شدت بر سرعت آن افزوده می‌شود [26]. بنابراین، با بررسی تنوع موجود، آگاهی از ساختار ژنتیکی جمعیت و بررسی تنوع فنوتیپی و ویژگی‌های شیمیایی می‌توان در بین توده‌های طبیعی به انتخاب، به‌عنوان اولین روش اصلاحی در طی اهلی‌کردن پرداخت [26]. تنوع ژنتیکی، کلیدی برای به‌نژادی گیاهان است. دانش روابط ژنتیکی بین توده‌های مختلف به مدیریت ژرم‌پلاسم کارآمد و استراتژی‌های بهره‌برداری کمک بزرگی می‌نماید. تنوع ژنتیکی گیاهان طی هزاران سال ایجاد شده و در طبیعت به صورت پایدار باقی مانده است [26].

ارقام بومی گیاهان زراعی و خویشاوندان وحشی آن‌ها، به دلیل قدمت و سازگاری‌شان به شرایط زیستی و عوامل نامسائد محیطی دارای مناسب‌ترین ژن‌ها بوده وتنوع ژنتیکی مورد نیاز اصلاح گیاه را تأمین می‌نماید [13]. تعیین میزان تنوع ژنتیکی در مواد گیاهی گام اولیه برای شناسایی، حفظ ونگهداری ذخایرتوارثی ونیز پایه اساسی و اولیه برای تحقیقات ژنتیکی و برنامه‌های اصلاحی می‌‌‌‌‌‌‌‌‌‌باشد [27].

گیاه  Aegilops crassa،دارای دو سیتوتیپ تتراپلوئید وهگزاپلوئید با ژنوم ( 2n=2x=28 McrMcrDcr1Dcr1) و (2n=6x=42 McrMcrDcr1Dcr1 Dcr2Dcr2  ) است [44]. تجزیه جفت شدن کروموزوم‌های میوزی در هیبریدهای بین سیتوتیپ‌های تتراپلوئید وهگزاپلوئید Ae. crassa بیانگر آن است که فرم هگزاپلوئید از هیبریداسیبون بین فرم تتراپلوئید Ae. crassa و Ae. tauschii حاصل گردیده است. اما در حال حاضر منشأ سیتوتیپ تتراپلوئید Ae. crassa را نمی‌توان با دقت تعیین کرد [69]. گیاهی یکساله و متعلق به خانواده گرامینه[1] یا پواسه[2] و طایفه تریتیسه[3] می‌‌‌‌‌‌‌‌‌‌باشد، این گونه به عنوان یک علف هرز شایع در مزارع گندم نان دیده می‌شود [57،56]. آژیلوپس کراسا در ترکیه، فلسطین، سوریه، اردن، ایران، عراق، لبنان، افغانستان، ترکمنستان و پامیر و کوه‌های آلتای پراکنده است، در ایران دارای دامنه پراکنش بسیار وسیعی بوده و از دامنه‌های البرز در شرق کشورتا شمال غرب در آذربایجان غربی وبر روی دامنه‌های رشته‌کوه زاگرس تا سواحل جنوبی در ارتفاعات استان بوشهر وهرمزگان می‌روید [101،40]. این گونه به عنوان یک منبع صفات مفید از قبیل تحمل به شوری، مقاومت به آفت و تحمل به سرما شناخته شده است [87،4]. مطالعه‌ی گونه‌های آژیلوپس در نقاط مختلف دنیا نشان می‌دهد که این گونه‌ها منابع ژنتیکی بی‌نظیری برای اصلاح گندم می‌باشند [33،17].

توده‌های بومی یک گیاه، ژرم‌پلاسم مناسبی برای برنامه‌های اصلاحی محسوب می‌شوند. بررسی تنوع ژنتیکی در گیاهان از طریق بررسی صفات مورفولوژیکی و بیوشیمیایی همواره متداول بوده است. باتوجه به اینکه اندازه‌گیری صفات مورفولوژیکی نیاز به صرف وقت، انرژی و هزینه زیادی دارد و به دلیل تاثیر عوامل محیطی بر بیان ژن و بروز صفات، بررسی تنوع ژنتیکی از طریق بررسی ویژگی‌های مورفولوژیکی روش قابل اعتمادی برای تعیین تفاوت‌های ژنتیکی نیست [8]. برای بررسی تنوع ژنتیکی می‌توان از نشانگرهای مورفولوژیکی، پروتئینی و نشانگرهای مولکولی استفاده نمود [113،102]. بررسی تنوع ژنتیکی در گیاهان، از طریق صفات مورفولوژیکی متداول بوده است [3]. با این وجود نشانگرهای مورفولوژیکی دارای معایب زیادی می‌باشند. از جمله این که تحت تأثیر شرایط محیطی و مرحله‌ی رشد موجود قرار می‌گیرند و پایداری کمی دارند [29]. بنابراین استفاده از نشانگرهای مولکولی یکی از ابزارهای بسیار مهم و قوی در زمینه بررسی تنوع ژنتیکی و انگشت نگاریDNA می‌باشدکه در ارزیابی روابط خویشاوندی ژنتیکی، انتخاب گیاهان برتر و بررسی شباهت یا تفاوت بین نمونه‌های مختلف کاربرد دارند [27]. همچنین استفاده از این نشانگرها در مدیریت ژرم‌پلاسم و انتخاب براساس نشانگر[4] (MAS)، برای افزایش کارایی اصلاح و تکثیر ژرم‌پلاسم مفید می‌باشد [27]. انتخاب نوع نشانگرهای مولکولی به تکرارپذیری و سادگی روش کار آن بستگی دارد. بهترین نشانگری است که دارای هزینه اجرای پایین و قابلیت اعتماد بالایی باشد. نشانگرهای مولکولی به دو دسته نشانگرهای بیوشیمیایی و نشانگرهای مبتنی بر DNA تقسیم می‌شوند. [3]. نشانگرهای مبتنی بر DNA نسبت به نشانگرهای مورفولوژیکی و پروتئینی، کاربردی تر و دارای مزایای بیشتری می‌باشند. بررسی DNA گیاهی امکان ارزیابی مستقیم تنوع ژنتیکی را ممکن می‌سازد [3]. تاکنون تعداد زیادی از نشانگر‌های مبتنی بر DNA معرفی شده‌اند و در تجزیه‌های ژنتیک موجودات مورد استفاده قرار گرفته‌اند نشانگرهای مبتنی بر DNA نسبت به نشانگرهای مورفولوژیکی و پروتئینی، کاربردی تر و دارای مزایای بیشتری می‌باشند [28]. این نشانگر ها از نظر بسیاری از ویژگی‌ها از قبیل درجه چندشکلی[5]، غالب[6] یا هم بارز[7] بودن، تعداد جایگاه‌های تجزیه‌شده در هر آزمایش، توزیع در سطح کروموزوم، تکرارپذیری، نیاز یا عدم نیاز به توالی‌یابی DNA الگو و هزینه مورد نیاز با همدیگر متفاوت‌اند [28]. نشانگرهایی که چند شکلی را در سطح DNA آشکار می‌نمایند، به عنوان یک ابزار قدرتمند برای توصیف و تنوع ژنتیکی شناخته شده‌اند

 

2-12-1- علل ایجاد چندشکلی حاصل از نشانگر مولکولی ISSR…………..

2-12-1-1- نمونه DNA………………………………………………………….

2-12-1-2- ماهیت آغازگر………………………………………………………… 25

2-12-1-3- روش مورد استفاده برای تشخیص باندها………………………… 26

2-12-2- مزایای نشانگرهای ISSR………………………………………………

2-12-2-1- تکرارپذیری بسیار بالا……………………………………………….. 26

2-12-2-2- دقت بالا………………………………………………………………. 27

2-12-2-3- تنوع بالا……………………………………………………………….. 27

2-12-2-4-  هزینه پایین………………………………………………………….. 27

2-12-2-5- سرعت و سهولت اجرا………………………………………………. 27

2-12-3- معایب نشانگرهای ISSR……………………………………………….

2-12- 4- انواع نشانگرهای ISSR………………………………………………..

2-12-4-1-تکنیک MP-PCR ……………………………………………………

2-12-4-2- تکنیک F-ISSR……………………………………………………..

2-12-5-کاربرد نشانگرهای مولکولی ISSR…………………………………..

2-12-5-1- انگشت­نگاری ژنومی………………………………………………… 29

2-12-5-2-   مطالعات تنوع ژنتیکی و تجزیه و تحلیل فیلوژنتیکی……………29

2-12-5-3-  نقشه­یابی ژنتیکی………………………………………………… 30

2-12-5-4-  نشانمند کردن ژن و انتخاب به کمک نشانگر…………………….. 30

2-12-5-5- مشخص کردن فراوانی توالی­های ریزماهواره­ای………………….. 30

2-12-5-6- کاربرد نشانگرهای  ISSR در شناسایی و رده­بندی گونه ها……31

2-13- تجزیه و تحلیل تنوع ژنتیکی……………………………………………… 31

2-14- تخمین فاصله ژنتیکی……………………………………………………. 32

2-14- 1- روش گروهبندی افراد یا جمعیت ها………………………………….. 32

2-14-1-1-تجزیه خوشه ای……………………………………………………… 33

2-14-1-2- تجزیه به مختصات اصلی (PCoA)………………………………….. 34

2-14-2-  معیارهای سودمندی نشانگرها………………………………………. 34

2-14-2-1- محتوی اطلاعات چندشکلی……………………………………….. 34

این مطلب را هم بخوانید :

این مطلب را هم بخوانید :
 

2-14-2-2-  احتمال همسانی…………………………………………………… 35

2-14-2-3-  قدرت تفکیک………………………………………………………….. 35

2-15- مروری بر مطالعات ژنتیکی  و مورفولوژی انجام شده روی گونه های آژیلوپس….35

فصل سوم (مواد و روشها)……………………………………………………….. 40

3 -1- مواد گیاهی………………………………………………………………… 41

3-2- آغازگرها………………………………………………………………………. 43

3-3-  مکان و زمان انجام آزمایش مولکولی…………………………………….. 43

3-4- عملیات زراعی……………………………………………………………….. 44

3 -4-1- مشخصات جغرافیایی محل انجام آزمایش مزرعه‌ای…………………. 44

3 -4- 2- طرح آزمایشی و مراحل اجرای آن………………………………………. 44

3 -5- استخراج DNA ژنومی………………………………………………………. 45

3-6- تعیین کمیت نمونه های DNA  ژنومی…………………………………….. 47

3 -7- تعیین کیفیت نمونه های DNA ژنومی……………………………………. 48

3 -8- روش تهیه آگاروز 8/0و 5/1 درصد برای تعیین کمیت وکیفیت و تفکیک قطعات تکثیر شده…..48

3-9- آماده سازی نمونه ها واجرای الکتروفورز ژل آگاروز………………………… 49

3-10- اجزای واکنش زنجیره ای پلیمراز…………………………………………… 50

3-11- سیکل حرارتی و مراحل واکنش زنجیره­ای پلیمراز……………………….. 50

3 -12-توان و زمان مورد نیاز برای الکتروفورز محصول PCR………………………..

3 -13- مواد تشکیل دهنده بافرTE………………………………………………….

3-14- تهیه بافر  TAE10X…………………………………………………………..

3 -15- اتیدیوم بروماید…………………………………………………………….. 53

3 -16- رنگ بارگذاری……………………………………………………………… 53

3 -17- مراحل رنگ آمیزی تا ظاهرسازی قطعات تکثیر شده…………………….53

3-18- تجزیه وتحلیل داده ها………………………………………………………… 54

3-18-1- امتیازبندی باندهای حاصل از داده های مولکولی……………………….54

3-18-2- تجزیه خوشه ای و آنالیز مولکولی…………………………………………54

فصل چهارم(بحث و نتیجه­گیری)…………………………………………………….55

4-1- نتایج استخراج DNA ژنومی…………………………………………………. 56

4 -2- نتایج واکنش زنجیره­ای پلیمراز……………………………………………… 56

4 -3- محاسبه چندشکلی نشانگرهای ISSR…………………………………….

4-4- محاسبه محتوای اطلاعات چندشکلی نشانگرهای ISSR…………………

4-5- محاسبه شاخص نشانگر(MI) نشانگرهای ISSR…………………………

4 -5- محاسبه ضرایب همبستگی کوفنتیک…………………………………….. 61

4-6- ترسیم دندروگرام جمعیت­های Ae.crassa…………………………………….

4-7- تجزیه به مختصات اصلی با استفاده از نرم­افزار DARWin  وترسیم نمودار سه بعدی جمعیت­ها با نرم ­افزار Minitab

4-8- محاسبه فاصله ژنتیکی درون و بین جمعیت­های Ae.crassa……………..

4-9- محاسبه ماتریس فاصله و تشابه ژنتیکی شاخص Nei ………………….

4 -10- میزان آلل­های چندشکل در جمعیت­های Ae.crassa…………………….

4-11- محاسبه شاخص­های ژنتیکی در جمعیت­های Ae.crassa…………………

4 -12- تجزیه واریانس مولکولی………………………………………………….. 71

4-13- بررسی صفات مورفولوژی…………………………………………………. 72

4-13-1- همبستگی ساده فنوتیپی……………………………………………… 72

4-13-2- تجزیه کلاستر (خوشه­ای)…………………………………………………74

4-13-3- تجزیه به مولفه های اصلی……………………………………………… 76

4 -13-4- تجزیه علیت (مسیر)…………………………………………………….. 78

4-14- نتیجه­گیری کلی مولکولی…………………………………………………. 80

4-15- نتیجه­گیری کلی مورفولوژیکی……………………………………………….81

4-15-1 پیشنهادات…………………………………………………………………… 83

منابع…..……………………………………………………………………………………84

چکیده:

گیاه Aegilops crassa ،دارای دو سیتوتیپ تتراپلوئید وهگزاپلوئید با ژنوم ( 2n=2x=28 McrMcrDcr1Dcr1 ) و (2n=6x=42 McrMcrDcr1Dcr1 Dcr2Dcr2  ) است. این گیاه  یکساله و متعلق به خانواده گرامینه و طایفه Triticeae می باشد. بررسی تنوع ژنتیکی در ژرم­پلاسم گیاهی پیش­نیاز هر برنامه­ی اصلاحی یا حفاظتی گیاهان است. این تحقیق به منظور بررسی تنوع ژنتیکی بین 16 جمعیت Ae.crassa با استفاده از 10 آغازگر ISSR انجام شد. DNA ژنومی از گونه­ها در مرحله­ی دو تا سه برگی به روش CTAB با اندکی تغییرات استخراج و نتایج تکثیر با آغازگرهای مختلف روی ژل آگاروز 5/1 درصد مشاهده شدند. باندهای تکثیر شده به صورت حضور باند (یک) و عدم حضور باند (صفر) امتیازدهی و با نرم­افزارهای مولکولی و آماری، تجزیه و تحلیل داده­ها  انجام گرفت. همچنین این آزمایش در قالب طرح آزمایشی اگمنت (در 3 بلوک) در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه ایلام انجام شد. از میان نمونه‌های ارزیابی شده سه نمونه که دارای بذر بیشتری بودند به عنوان شاهد استفاده شدند. نتایج تکثیر DNA ژنومی با استفاده از آغازگرهای ISSR، در مجموع 105 آلل تولید کرد که از این تعداد 86 آلل (9/81 درصد)، به عنوان آلل چندشکل تشخیص داده شد. اندازه آلل­های تکثیر شده از 190 (آغازگر UBC840) تا 1500 جفت باز (آغازگر 12،14) بود. محتوای اطلاعات چندشکلی از 17/0 در آغازگر UBC842 تا 34/0 برای آغازگر 12 متفاوت بود. همچنین با استفاده از نشانگر ISSR به ترتیب بیشترین و کم­ترین درصد باندهای چندشکل در جمعیت IUGB-00319 (05/39 درصد) و IUGB-01564 (48/10درصد) مشاهده گردید. جمعیت IUGB-00319 بالاترین شاخص تصحیح شده هتروژنی و میزان شاخص شانون را به خود اختصاص داد. آنالیز واریانس مولکولی نشان داد که سطح بیشتری از تنوع به درون جمعیت­ها (53 درصد) تعلق داشت، درحالی که (47 درصد) تنوع در بین جمعیت­ها مشاهده گردید. همچنین تجزیه خوشه ای داده‌ها با استفاده از ماتریس شاخص Nei با الگوریتم Nj انجام شد. دندروگرام بدست آمده جمعیت­ها را به سه گروه و زیر گروه­هایی تقسیم نمود و تا حدی عدم ارتباط بین تنوع مولکولی و تنوع جغرافیایی را نشان داد. نتایج این تحقیق نشان می­دهد که نشانگرهای ISSR برای ارزیابی میزان تنوع ژنتیکی در آژیلوپس کراسا مفید است.

فصل اول: مقدمه و اهداف

1-1- مقدمه

ایران یکی از غنی ترین مراکز دنیا از نظر ذخایر ژنتیکی گیاهی محسوب می‌شود. به عقیده گیاهشناسان ایرانی حدود 10 الی 12 هزار گونه گیاهی در ایران وجود دارد که آن را به عنوان یکی از غنی ترین مراکز تنوع ذخایر توارثی گیاهی در جهان ساخته است.گونه های وحشی به لحاظ داشتن ژن های مفید برای مقاومت به تنش های زنده و غیرزنده و گسترش سازگاری ژنتیکی در برابر تغییرات محیطی دارای اهمیت می‌باشند. برای استفاده از این منابع، اطلاع از ماهیت و  میزان تنوع موجود در ژرم‌پلاسم، از اهمیت ویژه‌ای برخوردار است [108] . بررسی تنوع ژنتیکی در گیاهان زراعی برای برنامه های اصلاحی و حفاظت از ذخایر توارثی، حیاتی بوده و اطلاع از سطح تنوع ژنتیکی در گونه گیاهی برای انتخاب والدین جهت رسیدن به هیبرید مناسب از اهمیت زیادی برخوردار است [109]. بررسی تنوع ژنتیکی همچنین از جنبه مدیریت موثر و حفظ منابع ژرم پلاسم دارای اهمیت می‌باشد [96]. روش‌هایی که برای تخمین تنوع ژنتیکی مورد استفاده قرار گرفته‌اند متفاوت می‌باشند. از جمله‌ی آن‌ها می توان ثبت شجره، خصوصیات مورفولوژیکی و نشانگرهای مولکولی را نام برد [41]. آگاهی از تنوع ژنتیکی ژرم‌پلاسم ها معیاری مناسب برای استفاده از آن‌ها در شناسایی و انتقال ژن‌ها در بهبود گیاهان زراعی می‌باشند [41]. تنوع ژنتیکی اساس بیشتر برنامه‌های اصلاحی بوده و انجام گزینش منوط به وجود تنوع ژنتیكی مطلوب از نظر ویژگیهای مورد بررسی می‌باشد [32]. مطالعه تنوع ژنتیكی فرآیندی است كه تفاوت یا شباهت گونه‌ها، جمعیت‌ها و یا افراد را با استفاده از روش‌ها و مدل‌های آماری خاص بر اساس صفات مورفولوژیك، اطلاعات شجره‌ای یا خصوصیات مولكولی افراد بیان می‌کنند [32]. تعیین سطح تنوع ژنتیکی یکی از مراحل اساسی در مدیریت مؤثر و استفاده از ذخایر ژنتیکی می‌‌‌‌‌‌‌‌‌‌باشد [96،23،7]. منابع ژنتیكی یا ذخایر توارثی به دلیل اهمیت فراوانی كه دارند یكی از ارزشمند ترین ثروت های ملی و منابع پایه ای در هر كشور محسوب می‌شوند [1]. یکی از عواقب اصلاح‌نباتات موفق، افزایش فرسایش یا کاهش منابع ژنتیکی گیاهی بوده که تحت برنامه انتخاب قرار گرفته‌اند. در سال های اخیر عوامل بسیار زیادی در فرسایش ژنتیکی و نابودی ذخایر ژرم‌پلاسم نقش داشته‌اند [16]. استفاده از واریته‌های اصلاح شده بجای واریته‌های بومی، اعمال روش‌های مدرن زراعی مانند استفاده از سموم علف‌کش، پیشرفت شهرها و مراکز صنعتی، مسکونی شدن زمین های زراعی و مرتعی، تغییر روش های کشت و سایر عواملی که منجر به فرسایش و انقراض مواد با ارزش می‌شوند که به‌طور مستقیم وغیر مستقیم در کشاورزی و اصلاح نباتات قابل استفاده هستند. بنابراین حفاظت و استفاده از منابع ژنتیکی گیاهی برای بقا و بهبود تولیدات زراعی ضروری بوده و به عنوان نیازی اساسی در توسعه پایدار و کاهش فقر محسوب می‌شود. تنوع ژنتیکی اساس اکثر برنامه های اصلاح نباتات می‌‌‌‌‌‌‌‌‌‌باشد [111،74،7]. موفقیت در اصلاح یک گیاه زراعی، در درجه اول به دسترسی تنوع ژنتیکی موجود در آن گیاه بستگی دارد، ضمن اینکه تنوع ژنتیکی یکی از ارکان اصلی کشاورزی پایدار است و وجود تنوع ژنتیکی در نظام‌های زراعی با درس گرفتن از طبیعت باید همواره مد نظر قرار گیرد. مدیریت و استفاده صحیح از تنوع موجود در ارقام محلی و خویشاوندان وحشی یک گونه گیاهی در اجرای برنامه‌های موثر اصلاحی بسیار مهم است. اولین قدم در اصلاح یک گیاه، شناسائی دقیق ساختار ژرم‌پلاسم آن گیاه است که این مطلب خود نمونه‌گیری منظم و دقیق از ژرم‌پلاسم را برای اهداف اصلاحی و حفاظتی امکان پذیر خواهد ساخت. کاهش تنوع علاوه بر کاهش بازده برنامه های اصلاحی، باعث یکنواختی ژنتیکی در مزارع و آسیب‌پذیری شدید محصولات کشاورزی در برابر آفات، بیماری‌ها و تنش‌های محیطی می‌گردد. خویشاوندان وحشی گیاهان، دربردارنده منابع ژنی با ارزش برای مقاومت به تنش‌های زنده و غیرزنده می باشند.

توده‌های وحشی و نژادهای بومی از مهم‌ترین منابع تنوع ژنتیکی در دسترس می‌باشند [26]. اهلی‌سازی جمعیت‌های برتر انتخاب شده از بین تعداد زیادی توده می‌تواند پیشرفت قابل توجهی در تأمین نیاز صنایع وابسته بدون نیاز به روش‌های پرهزینه و گران اصلاحی ایجاد نماید [26]. اهلی‌کردن، فرآیندی طولانی است، اما با انتخاب مناسب در شروع به شدت بر سرعت آن افزوده می‌شود [26]. بنابراین، با بررسی تنوع موجود، آگاهی از ساختار ژنتیکی جمعیت و بررسی تنوع فنوتیپی و ویژگی‌های شیمیایی می‌توان در بین توده‌های طبیعی به انتخاب، به‌عنوان اولین روش اصلاحی در طی اهلی‌کردن پرداخت [26]. تنوع ژنتیکی، کلیدی برای به‌نژادی گیاهان است. دانش روابط ژنتیکی بین توده‌های مختلف به مدیریت ژرم‌پلاسم کارآمد و استراتژی‌های بهره‌برداری کمک بزرگی می‌نماید. تنوع ژنتیکی گیاهان طی هزاران سال ایجاد شده و در طبیعت به صورت پایدار باقی مانده است [26].

ارقام بومی گیاهان زراعی و خویشاوندان وحشی آن‌ها، به دلیل قدمت و سازگاری‌شان به شرایط زیستی و عوامل نامسائد محیطی دارای مناسب‌ترین ژن‌ها بوده وتنوع ژنتیکی مورد نیاز اصلاح گیاه را تأمین می‌نماید [13]. تعیین میزان تنوع ژنتیکی در مواد گیاهی گام اولیه برای شناسایی، حفظ ونگهداری ذخایرتوارثی ونیز پایه اساسی و اولیه برای تحقیقات ژنتیکی و برنامه‌های اصلاحی می‌‌‌‌‌‌‌‌‌‌باشد [27].

گیاه  Aegilops crassa،دارای دو سیتوتیپ تتراپلوئید وهگزاپلوئید با ژنوم ( 2n=2x=28 McrMcrDcr1Dcr1) و (2n=6x=42 McrMcrDcr1Dcr1 Dcr2Dcr2  ) است [44]. تجزیه جفت شدن کروموزوم‌های میوزی در هیبریدهای بین سیتوتیپ‌های تتراپلوئید وهگزاپلوئید Ae. crassa بیانگر آن است که فرم هگزاپلوئید از هیبریداسیبون بین فرم تتراپلوئید Ae. crassa و Ae. tauschii حاصل گردیده است. اما در حال حاضر منشأ سیتوتیپ تتراپلوئید Ae. crassa را نمی‌توان با دقت تعیین کرد [69]. گیاهی یکساله و متعلق به خانواده گرامینه[1] یا پواسه[2] و طایفه تریتیسه[3] می‌‌‌‌‌‌‌‌‌‌باشد، این گونه به عنوان یک علف هرز شایع در مزارع گندم نان دیده می‌شود [57،56]. آژیلوپس کراسا در ترکیه، فلسطین، سوریه، اردن، ایران، عراق، لبنان، افغانستان، ترکمنستان و پامیر و کوه‌های آلتای پراکنده است، در ایران دارای دامنه پراکنش بسیار وسیعی بوده و از دامنه‌های البرز در شرق کشورتا شمال غرب در آذربایجان غربی وبر روی دامنه‌های رشته‌کوه زاگرس تا سواحل جنوبی در ارتفاعات استان بوشهر وهرمزگان می‌روید [101،40]. این گونه به عنوان یک منبع صفات مفید از قبیل تحمل به شوری، مقاومت به آفت و تحمل به سرما شناخته شده است [87،4]. مطالعه‌ی گونه‌های آژیلوپس در نقاط مختلف دنیا نشان می‌دهد که این گونه‌ها منابع ژنتیکی بی‌نظیری برای اصلاح گندم می‌باشند [33،17].

توده‌های بومی یک گیاه، ژرم‌پلاسم مناسبی برای برنامه‌های اصلاحی محسوب می‌شوند. بررسی تنوع ژنتیکی در گیاهان از طریق بررسی صفات مورفولوژیکی و بیوشیمیایی همواره متداول بوده است. باتوجه به اینکه اندازه‌گیری صفات مورفولوژیکی نیاز به صرف وقت، انرژی و هزینه زیادی دارد و به دلیل تاثیر عوامل محیطی بر بیان ژن و بروز صفات، بررسی تنوع ژنتیکی از طریق بررسی ویژگی‌های مورفولوژیکی روش قابل اعتمادی برای تعیین تفاوت‌های ژنتیکی نیست [8]. برای بررسی تنوع ژنتیکی می‌توان از نشانگرهای مورفولوژیکی، پروتئینی و نشانگرهای مولکولی استفاده نمود [113،102]. بررسی تنوع ژنتیکی در گیاهان، از طریق صفات مورفولوژیکی متداول بوده است [3]. با این وجود نشانگرهای مورفولوژیکی دارای معایب زیادی می‌باشند. از جمله این که تحت تأثیر شرایط محیطی و مرحله‌ی رشد موجود قرار می‌گیرند و پایداری کمی دارند [29]. بنابراین استفاده از نشانگرهای مولکولی یکی از ابزارهای بسیار مهم و قوی در زمینه بررسی تنوع ژنتیکی و انگشت نگاریDNA می‌باشدکه در ارزیابی روابط خویشاوندی ژنتیکی، انتخاب گیاهان برتر و بررسی شباهت یا تفاوت بین نمونه‌های مختلف کاربرد دارند [27]. همچنین استفاده از این نشانگرها در مدیریت ژرم‌پلاسم و انتخاب براساس نشانگر[4] (MAS)، برای افزایش کارایی اصلاح و تکثیر ژرم‌پلاسم مفید می‌باشد [27]. انتخاب نوع نشانگرهای مولکولی به تکرارپذیری و سادگی روش کار آن بستگی دارد. بهترین نشانگری است که دارای هزینه اجرای پایین و قابلیت اعتماد بالایی باشد. نشانگرهای مولکولی به دو دسته نشانگرهای بیوشیمیایی و نشانگرهای مبتنی بر DNA تقسیم می‌شوند. [3]. نشانگرهای مبتنی بر DNA نسبت به نشانگرهای مورفولوژیکی و پروتئینی، کاربردی تر و دارای مزایای بیشتری می‌باشند. بررسی DNA گیاهی امکان ارزیابی مستقیم تنوع ژنتیکی را ممکن می‌سازد [3]. تاکنون تعداد زیادی از نشانگر‌های مبتنی بر DNA معرفی شده‌اند و در تجزیه‌های ژنتیک موجودات مورد استفاده قرار گرفته‌اند نشانگرهای مبتنی بر DNA نسبت به نشانگرهای مورفولوژیکی و پروتئینی، کاربردی تر و دارای مزایای بیشتری می‌باشند [28]. این نشانگر ها از نظر بسیاری از ویژگی‌ها از قبیل درجه چندشکلی[5]، غالب[6] یا هم بارز[7] بودن، تعداد جایگاه‌های تجزیه‌شده در هر آزمایش، توزیع در سطح کروموزوم، تکرارپذیری، نیاز یا عدم نیاز به توالی‌یابی DNA الگو و هزینه مورد نیاز با همدیگر متفاوت‌اند [28]. نشانگرهایی که چند شکلی را در سطح DNA آشکار می‌نمایند، به عنوان یک ابزار قدرتمند برای توصیف و تنوع ژنتیکی شناخته شده‌اند

موضوعات: بدون موضوع  لینک ثابت
 [ 12:18:00 ب.ظ ]




1-7- منابع ژنتیکی ذرت…………………………………………………………………. 10

1-8- طبقه بندی ذرت شیرین از نقطه نظر میزان شیرینی آنها………………………. 11

فصل دوم- مروری بر تحقیقات انجام شده

2-1-    روش های اصلاح ذرت………………………………………………………… 17

2-2-    هیبرید ذرت…………………………………………………………………….. 17

2-3-    اهداف اصلاح ذرت………………………………………………………………. 18

2-4-    توراثت پذیری…………………………………………………………………. 18

2-5-    هتروزیس……………………………………………………………………… 19

2-6-     تولید واریته‎های هیبرید ذرت و قابلیت تركیب‎پذیری………………………. 23

2-7-    تجزیه خوشه‌ای تجزیه خوشه‌ای……………………………………………. 25

2-7-1-  روش های طبقاتی………………………………………………………….. 25

2-7-2-  روش های تقسیم بندی……………………………………………….. 26

2-8-     تجزیه به مؤلفه‌های اصلی………………………………………………….. 27

2-9-    تجزیه به عامل‌ها……………………………………………………………. 29

فصل سوم -مواد و روشها

3-1-    مشخصات طرح آزمایشی…………………………………………………….. 37

3-2-    صفات مورد بررسی…………………………………………………………… 39

3-3-     صفات مرفولوژیک………………………………………………………….. 39

3-3-1-         عملکرد دانه و اجزائ عملکرد……………………………………….. 39

3-3-2-         تعداد بوته های استقرار یافته……………………………………… 39

3-3-3-         ارتفاع بوته…………………………………………………………….. 39

3-3-4-         ارتفاع بلال……………………………………………………………… 40

3-3-5-         تعداد کل برگ……………………………………………………………. 40

3-3-6-         تعداد برگ بالای بلال اصلی………………………………………… 40

3-3-7-         تعداد بوته برداشتی…………………………………………………… 40

3-3-8-         عملکرد دانه ناخالص………………………………………………….. 40

3-3-9-         عملکرد دانه خالص……………………………………………… 40

3-3-10-       تعداد ردیف دانه……………………………………………………….. 41

1-7- منابع ژنتیکی ذرت…………………………………………………………………. 10

1-8- طبقه بندی ذرت شیرین از نقطه نظر میزان شیرینی آنها………………………. 11

فصل دوم- مروری بر تحقیقات انجام شده

2-1-    روش های اصلاح ذرت………………………………………………………… 17

2-2-    هیبرید ذرت…………………………………………………………………….. 17

2-3-    اهداف اصلاح ذرت………………………………………………………………. 18

2-4-    توراثت پذیری…………………………………………………………………. 18

2-5-    هتروزیس……………………………………………………………………… 19

2-6-     تولید واریته‎های هیبرید ذرت و قابلیت تركیب‎پذیری………………………. 23

2-7-    تجزیه خوشه‌ای تجزیه خوشه‌ای……………………………………………. 25

2-7-1-  روش های طبقاتی………………………………………………………….. 25

2-7-2-  روش های تقسیم بندی……………………………………………….. 26

2-8-     تجزیه به مؤلفه‌های اصلی………………………………………………….. 27

2-9-    تجزیه به عامل‌ها……………………………………………………………. 29

فصل سوم -مواد و روشها

3-1-    مشخصات طرح آزمایشی…………………………………………………….. 37

3-2-    صفات مورد بررسی…………………………………………………………… 39

3-3-     صفات مرفولوژیک………………………………………………………….. 39

3-3-1-         عملکرد دانه و اجزائ عملکرد……………………………………….. 39

3-3-2-         تعداد بوته های استقرار یافته……………………………………… 39

3-3-3-         ارتفاع بوته…………………………………………………………….. 39

3-3-4-         ارتفاع بلال……………………………………………………………… 40

3-3-5-         تعداد کل برگ……………………………………………………………. 40

3-3-6-         تعداد برگ بالای بلال اصلی………………………………………… 40

3-3-7-         تعداد بوته برداشتی…………………………………………………… 40

3-3-8-         عملکرد دانه ناخالص………………………………………………….. 40

3-3-9-         عملکرد دانه خالص……………………………………………… 40

3-3-10-       تعداد ردیف دانه……………………………………………………….. 41

3-3-11-       قطر بلال………………………………………………………………… 41

3-3-12-       قطر چوب بلال………………………………………………………… 42

3-3-13-       عمق دانه…………………………………………………………….. 42

3-3-14-       طول بلال……………………………………………………………… 42

3-4-      اندازه گیری صفات کیفی…………………………………………………. 42

3-5-    نحوه اندازه گیری هتروزیس………………………………………………… 43

3-5-1-         هتروزیس نسبی……………………………………………………. 43

3-5-2-         هتروزیس استاندارد…………………………………………………. 44

3-6-     تعیین قند محلول با استفاده از معرف آنترون (Anthrone Reagent)……. 44

3-6-1-         روش کار……………………………………………………………… 45

3-6-2-         خشک کردن…………………………………………………………… 45

3-6-3-         استخراج………………………………………………………………. 46

3-6-4-         واکنش رنگ سنج………………………………………………….. 46

3-6-5-         منحنی استاندارد……………………………………………………. 47

3-6-6-         منحنی استاندارد برای میکروپلیت………………………………. 49

3-7-    محاسبه درصد ساکارز……………………………………………………… 50

3-8-    محاسبات آماری……………………………………………………………. 53

3-8-1-         تجزیه واریانس ساده……………………………………………… 53

3-8-2-         تجزیه به مؤلفه‌های اصلی………………………………………. 54

3-8-3-         تجزیه به عامل‌ها……………………………………………………. 54

3-8-4-         تجزیه خوشه‌ای…………………………………………………… 54

3-9-    نرم افزارهای مورد استفاده در تجزیه های آماری………………………. 54

فصل چهارم-نتایج و بحث

4-1-    نتایج تجزیه  واریانس………………………………………………………… 57

4-2-    مقایسات میانگین…………………………………………………………… 59

4-2-1-         ارتفاع بوته…………………………………………………………….. 59

4-2-2-         ارتفاع بلال…………………………………………………………….. 59

4-2-3-         طول تاسل…………………………………………………………… 60

4-2-4-         طول بلال…………………………………………………………… 61

4-2-5-         قطر ساقه……………………………………………………………. 61

4-2-6       تعداد برگ……………………………………………………………….. 63

4-2-7-         تعداد برگ بالای بلال اصلی……………………………………….. 63

4-2-8-         عمق دانه……………………………………………………………. 66

4-2-9-         تعداد ردیف دانه در بلال…………………………………………….. 66

4-2-10-       تعداد دانه در ردیف بلال……………………………………………. 67

4-2-11-       عملکرد دانه……………………………………………………………. 67

4-3-    وراثت پذیری…………………………………………………………………… 68

4-4-    هتروزیس و هتروبلیتیوزیس……………………………………………….. 70

4-5-    تجزیه به مولفه های اصلی……………………………………………….. 75

4-6-     تجزیه به عامل ها………………………………………………………….. 77

4-7-    تجزیه خوشه ای……………………………………………………………… 80

4-8-    کیفی…………………………………………………………………………. 84

4-9-    تجزیه بایپلات………………………………………………………………… 90

4-9-1-  ارزیابی صفات در بین ژنوتیپها……………………………………………. 91

4-9-2-  ارزیابی ژنوتیپها در بین صفات………………………………………….. 93

4-9-3-  متوسط پایداری ژنوتیپها……………………………………………………. 95

نتیجه گیری………………………………………………………………………… 97

فصل 5-     فهرست منابع…………………………………………………………. 99

چکیده:

ذرت شیرین با نام علمی  (Zea mays L.var saccharata ) به عنوان یکی از سبزیجات مفید و با ارزش غذایی بالا می­تواند در سبد غذایی خانوارها وارد و تثبیت گردد. برآورد تنوع ژنتیکی، وراثت پذیری و هتروزیس لاین ها و هیبریدهای ذرت شیرین و فوق شیرین برای اهداف به نژادی اهمیت زیادی دارد و می تواند به تعیین استراتژی های اصلاحی کمک کند. این تحقیق به منظور بررسی صفات کمی و کیفی ژنوتیپ­های ذرت شیرین و فوق شیرین در مرکز تحقیقات كشاورزی و منابع طبیعی خراسان رضوی اجرا گردید. در این پژوهش 38 ژنوتیپ ذرت شیرین و فوق شیرین (شامل: 13 لاین، 18 هیبرید و 7 رقم تجاری جدید ذرت شیرین و فوق شیرین) در سه تكرار، در قالب طرح بلوک­های کامل تصادفی مورد ارزیابی قرار گرفت. نتایج تجزیه واریانس نشان داد تفاوت بسیار معنی داری بین اکثر ژنوتیپ ها برای کلیه صفات وجود داشت، دامنه تغییرات وراثت پذیری عمومی از  71/85 درصد تا 49/85 درصد متفاوت بود که به ترتیب مربوط به صفات تعداد کل برگ و عملکرد دانه بود. بر اساس مقایسات میانگین هیبرید تجاری Passion بیشترین و لاین Harvest gold کمترین عملکرد دانه قابل کنسرو را داشتند. همچنین بالاترین درصد هتروزیس مربوط به صفت عملکرد دانه بود که در هیبرید Temptation × Chase با 92/446 درصد دیده شد. تجزیه به مولفه های اصلی نشان داد که 3 مولفه اول در مجموع 72 درصد از تنوع کل موجود در بین داده ها را توجیه می نماید. نتایج تجزیه بای پلات نیز نشان داد که در بین ژنوتیپ ها، هیبرید امید بخش Harvest gold × Merit با توجه به نمودار چند ضلعی و نمودار میانگین پایداری، از ارزش و پایداری بالایی برای اکثر صفات کمی برخوردار بوده. همچنین تجزیه خوشه ای ژنوتیپ های مورد مطالعه را به 3 گروه تقسیم بندی نمود. نتایج تجزیه صفات کیفی نشان داد که ژنوتیپ Harvest gold × Merit از نظر اکثر صفات کیفی که توسط تست پانل بررسی شد می تواند با رقم شاهد که یک رقم صنعتی و وارداتی است قابل رقابت باشد. همچنین می توان گفت که لینه های Harvst gold, Chase Temptation, باعث بهبود صفاتی چون عملکرد دانه، عمق دانه، تعداد دانه در ردیف، طول بلال و ارتفاع بوته شده اند و ترکیب پذیری خوبی را نشان داده اند. بنابراین لاین های مذکور می توانند در برنامه های اصلاحی آینده به عنوان لاین­های امید بخش مورد استفاده قرار گیرند.

فصل اول: مقدمه و کلیات

1-1- مقدمه

نیاز به تولید بیشتر غلات در جهان رو به افزایش است و در مورد ذرت انتظار می رود از نظر تولید در سال های آتی از گندم و برنج هم پیشی خواهد گرفت. بر اساس آمار و پیش بینی های سازمان جهانی غلات(FAO) و مرکز بین المللی تحقیقات گندم و ذرت(CIMMYT) تولید جهانی ذرت به مقدار 50 درصد از 558 ملیون تن در سال 1995 به 837 ملیون تن در سال 2020 خواهد رسید و این طور که به نظر می رسد این مقدار تا حدودی در سال 2010 به دست آمده است (UNDP GC  FcilityMaize Scorpin. 2010).

ذرت شیرین (Zea mays l. var saccharata) یکی از مردم پسندترین سبزی­های ایالات متحده آمریكا است وعلاقه به آن در آسیا و اروپا هم در حال افزایش است. ذرت شیرین به دلیل وجود ژن یا ژن­هایی كه سنتز نشاسته را در آندوسپرم تغییر داده و به آن قابلیت مصرف تازه خوری می­دهند، به وجودآمده است (Kaukis and Davis, 1986).

ذرت از نظر تغذیه دام، فیبر، منبع سوختی تغذیه مستقیم انسان در جایگاه اقتصادی مهمی قرار گرفته است. این گیاه به عنوان جزئی از تولیدات صنعتی به شمار می رود که روی تغذیه جمعیت جهانی تاثیر گذار است. روش های اصلاحی در مورد گیاهان خودگشن و دگرگشن را می توان در مورد ذرت به کار برد و از این رو اصلاح ذرت آینده روشنی خواهد داشت. این تنوع در استفاده از روش های اصلاحی اجازه آزمایش­های بیش­تری را به اصلاح گران می دهد. از این روش­ها می توان به عنوان محرکی به سمت پیشرفت جمعیت­ها، اینبرد لاین­ها و هیبرید­های آن­ها جهت اهداف مختلف تجاری استفاده کرد. (Hallauer et al., 2010)

2-1- اهمیت جهانی ذرت

در سال 2012سطح زیر کشت ذرت شیرین در دنیا یک میلیون هکتار، با میانگین تولید 8/5 تن در هكتار  بوده است (FAO, 2013).

در ایران پیش بینی می شود سطح زیر کشت ذرت شیرین در سال 1393 به 15000 هکتار با متوسط عملکرد 10 تن بلال در هکتاربرسد.

ارزش کل ذرت شیرین در سال 2012، 12 میلیارد دلار بوده که از این میزان 69 درصد برای بازار تازه خوری و 31 درصد برای صنایع تبدیلی بوده است. میزان ارزش محصول ذرت شیرین برای صنایع تبدیلی (منجمد و کنسروی) 2/9 میلیون تن به ارزش000/100/373 دلار در سال 2012 بوده است
(NASS, 2013).

ذرت به دلیل ویژگی های بسیار زیاد خود، به ویژه به دلیل سازگاری با شرایط اقلیمی گوناگون، بسیار زود در تمام دنیا گسترش یافت و مکان سوم را بعد از گندم و برنج از نظرسطح زیرکشت به خود اختصاص داد، در حال حاضر در بیش از 147 میلیون هکتار از اراضی دنیا کشت می گردد (خاوری خراسانی، 1388). تجربیات علمی و آزمایش های متعددی که در نقاط مختلف دنیا بر روی ذرت انجام گرفته، مشخص نموده است که ذرت علاوه بر آن که علوفه ای بسیار مطلوب برای دام می باشد از نظر تأمین انرژی نیز بی نظیر است، به همین دلیل امروزه ذرت در تغذیه مرغ تخم گذار به عنوان یک غذای پر انرژی، دارای اهمیت بسیار زیادی بوده و مقام و ارزش بالایی را در مقایسه با سایر غلات دارا می باشد (نورمحمدی و همكاران، 1380). ذرت بیشتر برای استفاده از دانه و علوفه کشت می گردد. نزدیک به 25-20 درصد از تولیدات جهانی ذرت به صورت مستقیم در شکل های مختلف (آرد ذرت، شیرینی، کنسرو، فرنی ذرت) در تغذیه انسان و 75-60 درصد آن به صورت های مختلف مانند دانه، پودر، سیلو و…به مصرف غذای دام می رسد. به علاوه، حدود 5 درصد تولید ذرت نیز جهت فرآورده های صنعتی مورد استفاده قرار ‌‌‌می گیرد (نورمحمدی و همكاران، 1380).

انتخاب روش اصلاحی مناسب برای بهره برداری از پتانسیل ژنتیکی صفات مختلف زراعی در یک گیاه بستگی به نوع عمل ژن های کنترل کننده یک صفت و نحوه توارث آن ها دارد (Akhtar and Chowdhry, 2006).

3-1- منشا و تاریخچه

 

3-3-11-       قطر بلال………………………………………………………………… 41

3-3-12-       قطر چوب بلال………………………………………………………… 42

3-3-13-       عمق دانه…………………………………………………………….. 42

3-3-14-       طول بلال……………………………………………………………… 42

3-4-      اندازه گیری صفات کیفی…………………………………………………. 42

3-5-    نحوه اندازه گیری هتروزیس………………………………………………… 43

3-5-1-         هتروزیس نسبی……………………………………………………. 43

3-5-2-         هتروزیس استاندارد…………………………………………………. 44

3-6-     تعیین قند محلول با استفاده از معرف آنترون (Anthrone Reagent)……. 44

3-6-1-         روش کار……………………………………………………………… 45

3-6-2-         خشک کردن…………………………………………………………… 45

3-6-3-         استخراج………………………………………………………………. 46

3-6-4-         واکنش رنگ سنج………………………………………………….. 46

3-6-5-         منحنی استاندارد……………………………………………………. 47

3-6-6-         منحنی استاندارد برای میکروپلیت………………………………. 49

3-7-    محاسبه درصد ساکارز……………………………………………………… 50

3-8-    محاسبات آماری……………………………………………………………. 53

3-8-1-         تجزیه واریانس ساده……………………………………………… 53

3-8-2-         تجزیه به مؤلفه‌های اصلی………………………………………. 54

3-8-3-         تجزیه به عامل‌ها……………………………………………………. 54

3-8-4-         تجزیه خوشه‌ای…………………………………………………… 54

3-9-    نرم افزارهای مورد استفاده در تجزیه های آماری………………………. 54

فصل چهارم-نتایج و بحث

4-1-    نتایج تجزیه  واریانس………………………………………………………… 57

4-2-    مقایسات میانگین…………………………………………………………… 59

4-2-1-         ارتفاع بوته…………………………………………………………….. 59

4-2-2-         ارتفاع بلال…………………………………………………………….. 59

4-2-3-         طول تاسل…………………………………………………………… 60

این مطلب را هم بخوانید :

این مطلب را هم بخوانید :
 

4-2-4-         طول بلال…………………………………………………………… 61

4-2-5-         قطر ساقه……………………………………………………………. 61

4-2-6       تعداد برگ……………………………………………………………….. 63

4-2-7-         تعداد برگ بالای بلال اصلی……………………………………….. 63

4-2-8-         عمق دانه……………………………………………………………. 66

4-2-9-         تعداد ردیف دانه در بلال…………………………………………….. 66

4-2-10-       تعداد دانه در ردیف بلال……………………………………………. 67

4-2-11-       عملکرد دانه……………………………………………………………. 67

4-3-    وراثت پذیری…………………………………………………………………… 68

4-4-    هتروزیس و هتروبلیتیوزیس……………………………………………….. 70

4-5-    تجزیه به مولفه های اصلی……………………………………………….. 75

4-6-     تجزیه به عامل ها………………………………………………………….. 77

4-7-    تجزیه خوشه ای……………………………………………………………… 80

4-8-    کیفی…………………………………………………………………………. 84

4-9-    تجزیه بایپلات………………………………………………………………… 90

4-9-1-  ارزیابی صفات در بین ژنوتیپها……………………………………………. 91

4-9-2-  ارزیابی ژنوتیپها در بین صفات………………………………………….. 93

4-9-3-  متوسط پایداری ژنوتیپها……………………………………………………. 95

نتیجه گیری………………………………………………………………………… 97

فصل 5-     فهرست منابع…………………………………………………………. 99

چکیده:

ذرت شیرین با نام علمی  (Zea mays L.var saccharata ) به عنوان یکی از سبزیجات مفید و با ارزش غذایی بالا می­تواند در سبد غذایی خانوارها وارد و تثبیت گردد. برآورد تنوع ژنتیکی، وراثت پذیری و هتروزیس لاین ها و هیبریدهای ذرت شیرین و فوق شیرین برای اهداف به نژادی اهمیت زیادی دارد و می تواند به تعیین استراتژی های اصلاحی کمک کند. این تحقیق به منظور بررسی صفات کمی و کیفی ژنوتیپ­های ذرت شیرین و فوق شیرین در مرکز تحقیقات كشاورزی و منابع طبیعی خراسان رضوی اجرا گردید. در این پژوهش 38 ژنوتیپ ذرت شیرین و فوق شیرین (شامل: 13 لاین، 18 هیبرید و 7 رقم تجاری جدید ذرت شیرین و فوق شیرین) در سه تكرار، در قالب طرح بلوک­های کامل تصادفی مورد ارزیابی قرار گرفت. نتایج تجزیه واریانس نشان داد تفاوت بسیار معنی داری بین اکثر ژنوتیپ ها برای کلیه صفات وجود داشت، دامنه تغییرات وراثت پذیری عمومی از  71/85 درصد تا 49/85 درصد متفاوت بود که به ترتیب مربوط به صفات تعداد کل برگ و عملکرد دانه بود. بر اساس مقایسات میانگین هیبرید تجاری Passion بیشترین و لاین Harvest gold کمترین عملکرد دانه قابل کنسرو را داشتند. همچنین بالاترین درصد هتروزیس مربوط به صفت عملکرد دانه بود که در هیبرید Temptation × Chase با 92/446 درصد دیده شد. تجزیه به مولفه های اصلی نشان داد که 3 مولفه اول در مجموع 72 درصد از تنوع کل موجود در بین داده ها را توجیه می نماید. نتایج تجزیه بای پلات نیز نشان داد که در بین ژنوتیپ ها، هیبرید امید بخش Harvest gold × Merit با توجه به نمودار چند ضلعی و نمودار میانگین پایداری، از ارزش و پایداری بالایی برای اکثر صفات کمی برخوردار بوده. همچنین تجزیه خوشه ای ژنوتیپ های مورد مطالعه را به 3 گروه تقسیم بندی نمود. نتایج تجزیه صفات کیفی نشان داد که ژنوتیپ Harvest gold × Merit از نظر اکثر صفات کیفی که توسط تست پانل بررسی شد می تواند با رقم شاهد که یک رقم صنعتی و وارداتی است قابل رقابت باشد. همچنین می توان گفت که لینه های Harvst gold, Chase Temptation, باعث بهبود صفاتی چون عملکرد دانه، عمق دانه، تعداد دانه در ردیف، طول بلال و ارتفاع بوته شده اند و ترکیب پذیری خوبی را نشان داده اند. بنابراین لاین های مذکور می توانند در برنامه های اصلاحی آینده به عنوان لاین­های امید بخش مورد استفاده قرار گیرند.

فصل اول: مقدمه و کلیات

1-1- مقدمه

نیاز به تولید بیشتر غلات در جهان رو به افزایش است و در مورد ذرت انتظار می رود از نظر تولید در سال های آتی از گندم و برنج هم پیشی خواهد گرفت. بر اساس آمار و پیش بینی های سازمان جهانی غلات(FAO) و مرکز بین المللی تحقیقات گندم و ذرت(CIMMYT) تولید جهانی ذرت به مقدار 50 درصد از 558 ملیون تن در سال 1995 به 837 ملیون تن در سال 2020 خواهد رسید و این طور که به نظر می رسد این مقدار تا حدودی در سال 2010 به دست آمده است (UNDP GC  FcilityMaize Scorpin. 2010).

ذرت شیرین (Zea mays l. var saccharata) یکی از مردم پسندترین سبزی­های ایالات متحده آمریكا است وعلاقه به آن در آسیا و اروپا هم در حال افزایش است. ذرت شیرین به دلیل وجود ژن یا ژن­هایی كه سنتز نشاسته را در آندوسپرم تغییر داده و به آن قابلیت مصرف تازه خوری می­دهند، به وجودآمده است (Kaukis and Davis, 1986).

ذرت از نظر تغذیه دام، فیبر، منبع سوختی تغذیه مستقیم انسان در جایگاه اقتصادی مهمی قرار گرفته است. این گیاه به عنوان جزئی از تولیدات صنعتی به شمار می رود که روی تغذیه جمعیت جهانی تاثیر گذار است. روش های اصلاحی در مورد گیاهان خودگشن و دگرگشن را می توان در مورد ذرت به کار برد و از این رو اصلاح ذرت آینده روشنی خواهد داشت. این تنوع در استفاده از روش های اصلاحی اجازه آزمایش­های بیش­تری را به اصلاح گران می دهد. از این روش­ها می توان به عنوان محرکی به سمت پیشرفت جمعیت­ها، اینبرد لاین­ها و هیبرید­های آن­ها جهت اهداف مختلف تجاری استفاده کرد. (Hallauer et al., 2010)

2-1- اهمیت جهانی ذرت

در سال 2012سطح زیر کشت ذرت شیرین در دنیا یک میلیون هکتار، با میانگین تولید 8/5 تن در هكتار  بوده است (FAO, 2013).

در ایران پیش بینی می شود سطح زیر کشت ذرت شیرین در سال 1393 به 15000 هکتار با متوسط عملکرد 10 تن بلال در هکتاربرسد.

ارزش کل ذرت شیرین در سال 2012، 12 میلیارد دلار بوده که از این میزان 69 درصد برای بازار تازه خوری و 31 درصد برای صنایع تبدیلی بوده است. میزان ارزش محصول ذرت شیرین برای صنایع تبدیلی (منجمد و کنسروی) 2/9 میلیون تن به ارزش000/100/373 دلار در سال 2012 بوده است
(NASS, 2013).

ذرت به دلیل ویژگی های بسیار زیاد خود، به ویژه به دلیل سازگاری با شرایط اقلیمی گوناگون، بسیار زود در تمام دنیا گسترش یافت و مکان سوم را بعد از گندم و برنج از نظرسطح زیرکشت به خود اختصاص داد، در حال حاضر در بیش از 147 میلیون هکتار از اراضی دنیا کشت می گردد (خاوری خراسانی، 1388). تجربیات علمی و آزمایش های متعددی که در نقاط مختلف دنیا بر روی ذرت انجام گرفته، مشخص نموده است که ذرت علاوه بر آن که علوفه ای بسیار مطلوب برای دام می باشد از نظر تأمین انرژی نیز بی نظیر است، به همین دلیل امروزه ذرت در تغذیه مرغ تخم گذار به عنوان یک غذای پر انرژی، دارای اهمیت بسیار زیادی بوده و مقام و ارزش بالایی را در مقایسه با سایر غلات دارا می باشد (نورمحمدی و همكاران، 1380). ذرت بیشتر برای استفاده از دانه و علوفه کشت می گردد. نزدیک به 25-20 درصد از تولیدات جهانی ذرت به صورت مستقیم در شکل های مختلف (آرد ذرت، شیرینی، کنسرو، فرنی ذرت) در تغذیه انسان و 75-60 درصد آن به صورت های مختلف مانند دانه، پودر، سیلو و…به مصرف غذای دام می رسد. به علاوه، حدود 5 درصد تولید ذرت نیز جهت فرآورده های صنعتی مورد استفاده قرار ‌‌‌می گیرد (نورمحمدی و همكاران، 1380).

انتخاب روش اصلاحی مناسب برای بهره برداری از پتانسیل ژنتیکی صفات مختلف زراعی در یک گیاه بستگی به نوع عمل ژن های کنترل کننده یک صفت و نحوه توارث آن ها دارد (Akhtar and Chowdhry, 2006).

3-1- منشا و تاریخچه

موضوعات: بدون موضوع  لینک ثابت
 [ 12:17:00 ب.ظ ]




آشنایی با سم‌پاش‌ها…………………………………………….. 8

2-1 تقسیم‌بندی سم‌پاش‌ها…………………………………….. 8

2-1-1 سم‌پاش‌های دستی………………………………………. 9

2-1-2 سم‌پاش‌های پشتی بدون موتور…………………………. 9

آشنایی با سم‌پاش‌ها…………………………………………….. 8

2-1 تقسیم‌بندی سم‌پاش‌ها…………………………………….. 8

2-1-1 سم‌پاش‌های دستی………………………………………. 9

2-1-2 سم‌پاش‌های پشتی بدون موتور…………………………. 9

این مطلب را هم بخوانید :

این مطلب را هم بخوانید :
 

 

موضوعات: بدون موضوع  لینک ثابت
 [ 12:17:00 ب.ظ ]
 
مداحی های محرم