5-5-5- تغییرات عدد کربونیل. 81

5-5-6- شاخص پایداری اکسایشی. 82

5-5-7- تغییرات ترکیبات فنولی. 83

5-5-8- مقادیر کل ترکیبات قطبی. 83

نتیجه گیری کلی:.. 84

پیشنهادات:.. 87

منابع.. 88

فهرست جداول

عنوان                                                                                                                                 صفحه

جدول 4-1: میانگین مقدار فنول کل عصارهها با روش های مختلف عصاره گیری.. 60

جدول 4-2: میانگین مقدار توکوفرول عصاره با روش های مختلف عصاره گیری.. 61

جدول 4-3: میانگین درصد مهار رادیکال آزاد DPPH.. 62

جدول4-4: میانگین تغییرات عدد پراکسید در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 64

جدول4-5: میانگین تغییرات عدد اسیدی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 65

جدول4-6: میانگین تغییرات عدد یدی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری   66

جدول4-7: میانگین تغییرات عدد کنژوگه در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 67

جدول4-8: میانگین تغییرات عدد کربونیل در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 68

جدول4-9: میانگین تغییرات شاخص پایداری اکسایشی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 69

جدول4-10: میانگین تغییرات مقدار فنول در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 70

جدول4-11: میانگین تغییرات ترکیبات قطبی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 72

جدول 5-1: ساختار اسید چرب روغن كانولای فاقد آنتی اكسیدان (صالحی و همکاران، 1393)   73

جدول 5-2: خصوصیات شیمیایی روغن كانولای فاقد آنتی اكسیدان (صالحی و همکاران، 1393)   74

فهرست اشکال

عنوان                                                                                                                                 صفحه

شکل 3- 1- دستگاه شیکر.. 47

شکل3-2- منحنی استاندارد غلظت اسید گالیک در برابر میزان جذب خوانده شده درطول موج ٧۶٥ نانومتر.. 49

شکل 3-3- منحنی كالیبراسیون میزان آلفا- توكوفرول در برابر میزان جذب خوانده شده در طول موج 520 نانومتر.. 51

شکل 3-4- دستگاه اسپکتروفتومتر.. 53

شکل3-5- منحنی كالیبراسیون غلظت آهن ш در برابر جذب خوانده شده درطول موج 500 نانومتر   55

شکل 4-1: مقایسه میانگین مقدار ترکیبات فنولیک.. 60

شکل 4-2: مقایسه میانگین مقدار ترکیبات توکوفرولی.. 61

شکل 4-3: مقایسه میانگین درصد مهار رادیکال آزاد DPPH در غلظت ppm 200. 62

شکل 4-4: مقایسه میانگین تغییرات عدد پراکسید عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 63

شکل 4-5: مقایسه میانگین تغییرات عدد اسیدی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 64

شکل 4-6: مقایسه میانگین تغییرات عدد یدی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 65

شکل 4-7: مقایسه میانگین تغییرات عدد کنژوگه عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 67

شکل 4-8: مقایسه میانگین تغییرات عدد کربونیل عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 68

دانلود مقاله و پایان نامه

 

شکل 4-9: مقایسه میانگین شاخص پایداری اکسایشی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 69

شکل 4-10: مقایسه میانگین تغییرات مقدار فنول عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 70

شکل 4-11: مقایسه میانگین تغییرات ترکیبات قطبی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 71

چکیده

اکسیداسیون روغن­ها علاوه بر تغییر ویژگیهای روغن­ها، بر سلامت مصرف کنندگان تاثیر سوئی می­گذارد. یکی از مهمترین روشها، جهت جلوگیری از اکسیداسیون، استفاده از آنتی­اکسیدانها است. به دلیل اثرات مضر آنتی­اکسیدانهای سنتزی، در سال­های اخیر توجه زیادی به آنتی­اکسیدانهای طبیعی استخراج شده از گیاهان شده است. گیاهان منبع غنی از تركیبات فنلی هستند كه مهم ترین آنتی اكسیدان های طبیعی به شمار می آیند نیاز به آنتی اكسیدان های طبیعی در صنایع غذایی، آرایشی و دارویی باعث تحقیقات علمی گسترده ای در دهه های اخیر شده است. در این پژوهش اثر روش استخراج با سه نوع حلال (آب، اتانول و اتانول – آب 50 درصد) بر خصوصیت آنتی اکسیدانی عصاره گیاه هلپه ارزیابی شد تا مناسبترین روش استخراج برای استفاده بهینه از این محصول جانبی، تعیین شود. در این روش استخراج با حلال، گیاه خورد شده با سه حلال فوق به نسبت (1به 10) مخلوط و در مدت زمان 24 ساعت در دمای اتاق و بر روی شیکر با سرعت rpm 250 انجام شد. اندازه گیری فنل تام عصاره ها با استفاده از روش فولین سیوکالتیو و فعالیت آنتی اکسیدانی عصاره ها با استفاده از روش حذف رادیکال های آزاد DPPH اندازه گیری گردید. در ادامه سه نوع عصاره بدست آمده را با غلظت ppm 200 جهت پایدارسازی روغن کانولا در طی انبارمانی به آن اضافه شد و با آنتی اکسیدان BHA و نمونه شاهد در دمای 25 درجه سانتیگراد در فواصل زمانی 15 روزه و به مدت 60 روز با 8 شاخص پایداری اکسیداتیو از جمله OSI، عدد پراکسید، عدد کربنیل، عدد کونژوگه، ترکیبات فنولی، ترکیبات قطبی، اندیس اسیدی و اندیس یدی مقایسه گردید. نتایج بدست آمده نشان داد که بیشترین میزان فنول (ppm 03/232/61) بدست آمده مربوط به عصاره­ی (اتانول- آب) می­باشد که بر مبنای اسید گالیک بیان می­شود همچنین بیشترین میزان توکوفرول (ppm 87/258/95)، مربوط به عصاره­ی (اتانول- آب) می­باشد ولی مقدار آن از لحاظ آماری با سایر نمونه ها اختلاف معنی دار نداشت. همچنین بیشترین درصد مهار در آزمون حذف رادیکال­های آزاد (95/1±49/51) مربوط به عصاره هیدروالکلی (اتانول- آب) ماسراسیون در غلظت ppm 200 میباشد. همچنین در همه آزمون­های پایدارسازی روغن کانولا بجز آزمون اندیس یدی و ترکیبات فنولی، نمونه حاوی عصاره اتانول – آب عملکرد بهتری نسبت به سایر نمونه ها داشتند.

واژگان کلیدی: گیاه هلپه، ترکیبات فنول، توکوفرول، DPPH، پایداری اکسایشی، روغن کانولا.

 فصل اول

 کلیات تحقیق

1-1- مقدمه:

به دلیل وجود مقدار قابل توجهی از پیوندهای دوگانه در بسیاری از روغن ها، این مواد درمعرض اكسیداسیون و فساد قرار دارند. برخی از تركیبات به وجود آمده در اثر اكسیداسیون برای سلامت انسان زیان آور می باشد . ترکیباتی مانند رادیکال های آزاد که این ترکیبات منجر به واکنش های نامطلوب شیمیایی و احتمالاً بیولوژیکی می شوند.  با توسعه علم بیوشیمی نقش موثر رادیکال های آزاد در خیلی از بیماری ها مشخص شده است و نقش رادیکال های آزاد و اکسیژن فعال در

این مطلب را هم بخوانید :

منبع تحقیق با موضوع نظریه های جامعه شناسی و استفاده از اینترنت

 بیماری هایی مثل تصلب شرایین، سرطان و پیری زودرسمورد توجه است. یكی از راه های مهم مقابله با اكسیداسیون روغنها استفاده از آنتی اكسیدانها می باشد. آنتی اکسیدان ها ترکیباتی هستند که با جذب رادیکال آزاد و در نتیجه ممانعت از اکسیداسیون، ازفساد، تغییر رنگ و یا تند شدن چربی ها جلوگیری می کنند.به خصوص آنتی اکسیدان هایی که بنیان  حلقوی فنولی حاوی گروه OH را دارا می باشند، نقش مهمی در جلوگیری از اکسیداسیون چربی دارند. اما طبق پاره ای از بررسیهای انجام شده، استفاده از آنتی اكسیدانهای سنتزی ممكن است تحت شرایطی با خطرات سرطان زایی، جهش زایی و یا اثرات سوء دیگری برای انسان همراه باشد. استفاده از روغن­ها و چربی­های خوراکی به منظور پخت و آماده­سازی مواد غذایی به سرعت رو به افزایش استو مصرف زیاد روغن­ها و چربی­ها مستلزم حساسیت و کنترل بیشتر خواص کیفی آن­ها طی فرایندهای مربوطه و به تبع آن حفظ سلامت تغذیه­ای جامعه است (Kritchesky et al, 2010).

پایداری کم روغن های مایع در برابر عوامل فساد، همیشه به عنوان یک مشکل کیفی مطرح بوده و اکسایش عامل اصلی فساد چربی ها و روغن ها محسوب می شود. از طرف دیگر پایداری روغن ها به ترکیب اسیدهای چرب آنها به ویژه درصد اسید لینولنیک و اسید لینولئیک نیز بستگی دارد و تفاوت ساختاری اسیدهای چرب که از تفاوت در طول زنجیره، درجه غیر اشباعی و محل قرارگیری پیوندهای

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...