کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


آخرین مطالب


 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

Purchase guide distance from tehran to armenia

 



2-2-11- تفرق موج………………………………………………….. 22
2-2-12- سرعت گروه موج…………………………………………. 22
2-2-13- تسونامی………………………………………………….. 23
2-2-14- جریان‌های ساحلی………………………………………… 23
2-2-15- فرآیندهای ناحیه ساحلی…………………………………. 23
2-2-16- نیمر‌خ ساحلی و تغییرات آن………………………………. 24
2-2-17- نیمرخ تابستانی ونیمرخ زمستانی………………………. 24
2-2-18- سازه‌های عمود بر ساحل……………………………….. 24
2-2-19- سازه­های موازی ساحل…………………………………. 26
2-2-20- احیاء ساحل و تخلیه رسوب……………………………… 26
2-2-21- مبانی نظری……………………………………………….. 27
2-3- مروری بر ادبیات موضوع……………………………………….. 27
فصل سوم: روش تحقیق…………………………………………….. 34
3-1- مقدمه…………………………………………………………… 35
3-2- معرفی نرم­افزار………………………………………………….. 35
3-2-1- مدول­های نرم­افزار مایک 21………………………………….. 36
-2-2-3 قابلیت­های نرم­افزار مایک 21…………………………………. 37
3-3- مراحل اجرای مدل و معادلات بکار رفته در مدول­ها ……………39
1-3-3- مدل­سازی انتشار امواج- مدول SW……………………….
3-3-1-1- معادلات پایه در مدل sw………………………………
3-3-1-2- معادلات پایستگی كنش موج……………………………43
3-3-1-3- توابع مربوطه به چشمه……………………………………….44
3-3-1-4- ورودی باد………………………………………………………44
3-3-1-5- تشكیل سپیدک رأس موج…………………………………….45
3-3-1-6- اصطكاك بستر………………………………………………….46
3-3-1-7- شكست موج…………………………………………………….49
3-3-1-8- شرایط مرزی…………………………………………………50
3-3-2- مدول هیدرودینامیک (HD  )………………………………….. 50
3-3-3- مدول انتقال رسوب ( ST )……………………………………… 53
3-4- منطقه مورد پژوهش………………………………………………. 58
1-4-3- جغرافیای خزر…………………………………………………… 58
3-4-2- موقعیت بندر امیرآباد…………………………………………… 59
3-5- مشخصات باد و موج منطقه…………………………………….. 63
3-6- مشخصات توپوگرافی و عمق­نگاری منطقه………………………. 66
فصل چهارم: نحوه برپایی و اجرای مدل­ها………………………………… 71
4-1- مدل­سازی انتقال موج از آب عمیق تا  محدوده­ی مطالعاتی بندر….72
4-2- تعیین گام زمانی حل معادلات…………………………………….. 75
-3-4 ضرایب ثابت مدل­سازی………………………………………………. 75
4-4- اجرای مدل و خروجی­های نرم­افزار…………………………………… 76
4-5-  بحث ونتیجه ­گیری ازخروجی مدل­ها………………………………. 77
4-5-1- خروجی مدل موج و جریان……………………………………….. 77
2-5-4- نتایج خروجی مدل رسوب……………………………………….. 88
4-5-2-1- پتانسیل انتقال رسوب از غرب به شرق……………………..88
4-5-2-2- پتانسیل انتقال رسوب از شرق به غرب……………………….90
4-5-2-3- پتانسیل انتقال رسوب در دهانه بندر…………………………..92
4-6- بررسی شواهد میدانی و تحقیقات گذشته……………………… 94
-1-6-4 ارزیابی نحوه جابجایی خطوط ساحلی از سال 1345 تا سال 1383…..94
4-6-2- ارزیابی نحوه جابجایی خطوط ساحلی از سال 1383  تا سال 1391…..98
فصل پنجم: نتیجه گیری وپیشنهادها ………………………………….. 101
5-1- بحث و نتیجه­گیری………………………………………………….. 102

5-2- پیشنهادات و راهکارها…………………………………………….. 104

 

5-2-1- پیشنهادات………………………………………………………. 104
2-2-5- راهکارها …………………………………………………………..105
منابع …………………………………………………………………….. 107
چکیده:
سواحل دریاها بدون دخالت­های انسانی، پایداری طبیعی خود را حفظ نموده و علیرغم تغییرات کوتاه مدت، نهایتاً با یک محیط زیست سالم ساحلی مواجه هستیم. منطقه امیرآباد مازندران طی سال­های اخیر با تحولات توسعه­ای از جمله احداث بندر امیرآباد همراه بوده و لذا تغییرات خط ساحل این منطقه در سال­های اخیر، هم ناشی از نوسانات دریا و هم حاصل احداث سازه در منطقه می­باشد. سواحل منطقه امیرآباد به دلیل احداث تأسیسات بندری از وضعیت تعادل و پایداری خارج شده و در سواحل بالادست­(ضلع غربی)و پایین­دست­(ضلع شرقی) به ترتیب رسوبگذاری و فرسایش دیده می­شود. منطقه ویژه اقتصادی امیرآباد در سه فاز طراحی شده، که در مجموع با داشتن 34 پست اسکله در آینده نزدیک به بزرگترین و مهمترین بندر حاشیه دریای مازندران تبدیل می­گردد. با توجه به اینکه بندر امیرآباد در حال توسعه بوده، شناختی کاربردی و مناسب از مشخصات این منطقه امری ضروری است. به دلیل هزینه بالای برداشت­های دریایی به صورت گسترده، امروزه با بالارفتن سرعت پردازش رایانه­ها و نیز رشد روش­های عددی برای حل معادلات حاکم بر فیزیک مسأله، معمولاً جهت پیش­بینی خصوصیات پدیده­های هیدرودینامیکی از شبیه­سازی عددی استفاده می­گردد. در این تحقیق، با توجه به اطلاعات باد و موج دوره زمانی 11 ساله مربوط به سال­های 1992 تا 2003، به بررسی امواج و جریان­های ناشی از آنها در محدوده بندر امیرآباد با استفاده از مدول­های SW  و  HD  نرم­افزار MIKE 21  پرداخته شده و بر اساس جریان­های کرانه­ای، نرخ انتقال رسوب کرانه ناشی از موج در این منطقه تعیین گردیده است. بر اساس نتایج مدل جریان، الگوی غالب جریان از سمت غرب به شرق و بر عكس می­باشد. به تبعیت الگوی جریان، انتقال رسوب در منطقه نیز از سمت غرب به شرق و بر عكس می­باشد. نرخ انتقال رسوب در مدل دو بعدی حدود 1000 متر­مكعب از سمت غرب به شرق و حدود 500 مترمكعب از سمت شرق به غرب در یک سال می­باشد. بر اساس شواهد تصاویر  ماهواره­ای و بررسی تحقیقات گذشته، پتانسیل نرخ انتقال در سمت غرب تأمین می­گردد و لذا پتانسیل سمت شرق برآورد نمی­گردد.
با توجه به میزان نشست رسوب، توقع می‏رود تا ده سال آینده ظرفیت حجم رسوب در پشت بازوی غربی پر نگردد و از این حیث نگرانی كوتاه­مدت وجود ندارد. جهت مرتفع نمودن این مشكل در بلند مدت می­توان از لایروبی و یا ساخت رانه رسوب­گیر استفاده کرد. در این پروژه، با احداث یك رانه رسوب­گیر در امتداد بازوی غربی، به رفع مشكل پرداخته شده، كه با توجه به نرخ نشست سالیانه حدود 1500 متر­مكعب در سال حدود 200 سال مشكل انتقال در سمت غرب بندر امیرآباد مرتفع  می­گردد.
فصل اول: مقدمه
1-1- مقدمه

سواحل تحت تأثیر عوامل مختلفی مانند موج، جریان و باد قرار دارند. این عوامل موجب فرسایش و رسوبگذاری در سواحل می­شوند. یکی از مهم‌ترین و مؤثرترین فرآیندهای انتقال رسوب در مناطق ساحلی، انتقال رسوب كرانه‌ای[1] می‌باشد و بررسی كیفی و كمی این پدیده سبب درك بهتری از رژیم فرسایش و رسوبگذاری در اطراف بندر و سازه‌های ساحلی می­گردد. سرعت و جهت جریان‌های دریایی یکی از اصلی‌ترین پارامترهای هیدرودینامیکی موثر در انتقال رسوب می‌باشند. جریان‌های 

این مطلب را هم بخوانید :

كرانه‌ای به سبب تأثیرات متقابل موج و بستر دریا، در ناحیة شكست امواج[2] ایجاد می­گردند. در این ناحیه گرادیان ایجاد­­ شده در تنش‌های برشی سبب تشكیل جریان‌های كرانه‌ای می­گردد، كه این جریان‌ها در انتقال بار رسوبی محدوده­ی ساحلی نقش عمده‌ای به عهده دارند. منطقه شکست از لحاظ پدیده­های هیدرودینامیکی، فعالترین ناحیه ساحلی است که در آن انتقال رسوب و تغییرات بستر دریا در اثر امواج شکنا و جریان­های نزدیک ساحل به وقوع می­پیوندد. در نزدیکی ساحل، عمق متغیر آب می­تواند تغییرات عمده­ای در شرایط موج در فاصله کم ایجاد کند. در واقع پارامتر مهم فیزیکی، عمق آبی است که امواج سطحی روی آن حرکت می­کنند. در طبیعت، عمق آب ثابت نیست و در اثر گردباد، خیزش طوفان یا دیگر دلایل، تغییر می­کند. این تغییرات سطح آب، بر الگوی شکست موج تأثیر می­گذارد. در ناحیه شکست می­بایست تغییرات موج، تراز سطح آب و مشخصات جریان­های ساحلی محاسبه شود تا بر اساس آنها امکان برآورد تخریب ناشی از طوفان( ناشی از سیلاب یا امواج )، محاسبه تغییرشکل تدریجی خط ساحلی و تغییر شکل پروفیل عمود بر ساحل و طراحی ایمن سازه­های­ ساحلی ( همچون آبشکن­ها و دیواره­های حفاظت ساحلی) فراهم گردد[1]­.

امواج که به ساحل نزدیک می­شوند تحت تأثیر پدیده­هایی نظیر تفرق و شکست، انرژی آنها افزایش یافته و می­توانند پدیده­های فرسایش را تسریع بخشند. از عوامل مؤثر بر فرسایش سواحل، دخالت­های انسانی و ساخت سازه­های ساحلی است، چنانچه این سازه­ها به درستی جانمایی نگردند، می­توانند اثرات تخریبی قابل توجهی به ساحل و فرسایش آن داشته باشند.
امروزه به­هم­خوردگی شرایط طبیعی سواحل و فرایندهای ساحلی، تحت تاثیر ساخت و سازهای بندری و نیروگاه­های مولد انرژی بطور فزاینده درناحیه ساحلی دریاها و اقیانوس­ها جریان دارد. به­ویژه در سواحل جنوبی دریای خزر در طی 30 سال اخیر، توأم با پیشروی آب دریا، ساخت­و­ساز و دخل­و­ تصرف در این عرصه طبیعی به شدت صورت گرفته است .ضرورت مطالعه این تغییرات که ناشی از عوامل طبیعی و انسانی و تأثیر متقابل آنها می­باشد، در زمینه مدیریت نواحی ساحلی بسیار حائز اهمیت است.
یکی از نرم­افزارهای موجود برای تحلیل جریان و پتانسیل نرخ انتقال رسوب، نرم­افزار Mike 21 می‏باشد. این نرم­افزار توسط موسسه تحقیقات دلفت دانمارک تهیه و گسترش یافته­است که می­تواند الگوی

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...

[سه شنبه 1399-07-01] [ 08:25:00 ق.ظ ]




2-احیا و بازیافت فلزات که با کاهش تدریجی منابع معدنی امری ضروری است.
1-1- مقدمه
فاضلابهای صنایع معدنی[11]، نساجی، چرم، دباغی، آبکاری فلزات با روی یا گالوانیزه‌کردن، مواد رنگی و رنگرزی، ذوب و استخراج فلزات و سایر فرایندهای فلزات و تصفیه آنها[12]، ساخت تجهیزات الکتریکی، آلیاژها، باطری، حشره‌کشها، لجن تصفیه خانه فاضلاب، خاکستر حاصل از زباله‌سوزها و فرایندهای مواد رادیواکتیو[11]، در مقیاس کوچک یا بزرگ حاوی مقادیر قابل توجهی از یونهای فلزات سمی می‌باشند[12].
فلزات سنگین مثل روی، سرب، کروم، کاربردهای زیادی در کارهای پایه مهندسی مثل تولید کاغذ، دباغی چرم مواد آلی شیمیایی و کودهای حاصل از مواد شیمیایی نفتی و غیره دارند. یونهای فلزات سمی خطرات بالقوه‌ای بر‌ سلامت انسان دارند و سبب ناراحتی‌های جسمی و در بعضی اوقات بیماریهای تهدید کننده شامل خسارت برگشت ناپذیر سیستم حیاتی بدن می‌شوند[13].
فلزات سنگین با ایجاد مکانیسمهای متعدد باعث به هم خوردن تعادل در موجودات زنده به ویژه انسان شده و طیف وسیعی از عوارض و اختلالات را به وجود می‌آورند[1].
از مهمترین این عوارض می‌توان به سرطان‌زائی، اثر بر سیستم اعصاب مرکزی و محیطی، تأثیر بر پوست، اثر بر خونسازی، اثر برسیستم قلب و عروق، آسیب کلیه‌ها و تجمع در بافتها اشاره کرد. از نقطه نظر سم‌شناسی، خطرناکترین فلزات جیوه، سرب، کادمیوم، و کروم(VI) می‌باشند. در بسیاری از موارد اثر فلزات سنگین بر انسان به خوبی شناخته نشده است. یونهای فلزات در محیط زیست تجمع پیدا کرده و وارد زنجیره غذایی می‌شوند[14].
2-1- کادمیوم

کادمیوم با روی و جیوه هم‌گروه می‌باشد. از فلزات نسبتاً نادر در طبیعت بوده و شصت و هفتمین عنصر از نظر فراوانی می‌باشد. نیمه عمر آن 30-10 سال می‌باشد. میانگین غلظت آن در پوسته زمین 2/0، فراوانی در خاک 7/0-01/0 و به طور متوسط 06/0 میلی‌گرم در کیلوگرم  تخمین زده شده است. غلظت مجاز در آب آشامیدنی 

این مطلب را هم بخوانید :

 

05/0mg/l  است. به طور طبیعی سالیانه حدود 25000 تن کادمیوم وارد محیط زیست می‌شود. حدود نیمی از این کادمیوم از طریق هوازدگی سنگ‌ها وارد رودخانه‌ها می‌شود. آتش‌سوزی جنگلها و آتشفشانها، فعالیت‌های بشری مانند شیرابه‌های زباله‌های صنعتی، تولید کودهای فسفاته مصنوعی از منابع مهم منتشر کننده کادمیوم هستند[15].

مهمترین منبع آن در طبیعت سنگ معدن روی، مانند سولفید روی و کانیهای ثانویه مثل کربنات روی است. همچنین فسفریت و میشل سیاه غنی از کادمیوم هستند. نقش بیولوژیکی مفیدی نیز برای آن شناخته نشده

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...

 [ 08:24:00 ق.ظ ]





معمولاً به محل برخورد تیر به ستون و یا تیر به تیر که شامل عناصر تقویت کننده از جمله ورق، نبشی، قطعات تقویت کننده در گره و لچکی ها می‌باشند، اتصال گفته می شود.
اتصال ساده: در این حالت فرض می شود که اتصال تیر به ستون انعطاف پذیر بوده و غیر صلب است و عکس‌العمل تکیه‌گاهی آن فقط در برابر برش محاسبه می شود. این نوع اتصال آزادی دوران تیر در انتهای آنرا تامین می‌نماید و برای این موضوع تغییر شکل غیر الاستیک در اتصال مجاز می‌باشد.

اتصال صلب : این نوع اتصال در برابر دوران تیر از خود مقاومت نشان می دهد و در تکیه گاه علاوه بر برش، ممان نیز نقش دارد. صلبیت اتصال بستگی به هندسه و شرایط طراحی دارد.

این مطلب را هم بخوانید :

 

 

3-1- شاخص صلب بودن اتصال
برای اتصال از صفحه رویین و زیرین و نبشی و سایر مقاطع استفاده می شود و روش اتصال معمولاً پیچ و مهره و یا جوش و یا ترکیب این دو می‌باشد. اتصالات متعارف سه دسته اند. صلب، نیمه صلب و 

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...

 [ 08:24:00 ق.ظ ]




2-2-1-1: ابزارهای جداگر ……………………………………………………………………..8

2-2-1-2:ابزارهای اتلاف انرژی SMA……………………………………………………….

2-2-1-2-1: اتصالات…………………………………………………………………………..9

2-2-1-2-2: تقویت و بهسازی سازه های قدیمی…………………………………………10

2-2-2: SMAها برای کنترل فعال سازه ها……………………………………………………11

2-2-3: SMAها برای کنترل نیمه فعال سازه ها……………………………………………..11

2-3:چگونگی بروز خواص آلیاژهای حافظه دار شکلی……………………………………..12

2-3-1: تعریف ها و بیان ویژگی های فاز های آلیاژ نیتینول………………………………….13

2-3-2: نحوه انتقال فازهای آلیاژهای نیتینول…………………………………………………14

2-3-2-1:انتقال فاز برگشت یا معکوس (تبدیل مارتنزیت به آستنیت) …………………….14

2-3-2-2: انتقال فاز رفت یا مستقیم (تبدیل آستنیت به مارتنزیت)……………………..15

2-3-3: سایر ویژگی های تبدیل فاز………………………………………………………….17

2-3-3-1: اثر سرعت بارگذاری در رفتار آلیاژهای حافظه دار شکلی……………………….17

2-3-3-2: اثر حافظه داری یک طرفه و دو طرفه……………………………………………….17

2-3-3-3:رفتار ترمومكانیكی………………………………………………………………….18

2-3-3-4: تعریف خاصیت ارتجاعی كاذب………………………………………………………19

2-3-3-5: تنش بازیافتی و نیروی محرک……………………………………………………….19

2-4: كریستالوگرافی آلیاژ Nitinol……………………………………………………………

2-4-1 :  تغییر حالت های مارتنزیتی و پدیده حافظه دار شدن……………………………..20

2-4-2:تغییر حالت تبدیل آستنیت به مارتنزیت ……………………………………………..20

2-4-3: بررسی پدیده حافظه داری ……………………………………………………………22

2-5:پیشینه تحقیق…………………………………………………………………………….24

2-5-1: مقایسه رفتار لرزه ای سیستم های دارای بادبند ساخته شده از آلیاژهای حافظه دار شکلی سیستم های دارای بادبند BRB…..

2-5-2:کنترل غیرفعال در پلها توسط آلیاژهای هوشمند………………………………….32

2-5-3: تقویت و بهسازی سازه های بتنی(دیوار برشی) با استفاده از آلیاژهوشمند…. 34

فصل سوم: روش تحقیق………………………………………………………………………43

3-1: مشخصات مکانیکی SMAهای مورد استفاده ……………………………………….44

3-2:مشخصات مدل ………………………………………………………………………….45

 

3-3: شبیه سازی کامپیوتری ……………………………………………………………….47

فصل چهارم: محاسبات و یافته های تحقیق ………………………………………………53

فصل پنجم:نتیجه گیری و پیشنهادات………………………………………………………..71

5-1: تحلیل نتایج ……………………………………………………………………………..74

5-2: پیشنهاد………………………………………………………………………………..75

منابع و مآخذ……………………………………………………………………………………..76

چکیده:

زلزله به عنوان یکی از مخرب ترین حوادث طبیعی قلمداد می شود. از این رو طراحی ایمن ساختمان ها در برابر زلزله یکی از پرحاشه ترین زمینه های مطرح در مهندسی عمران می باشد.یکی از روش های مناسب برای کاهش اثرات تخریبی زلزله و جدا شدن از روش های سنتی استفاده از سیستم ها و مصالح هوشمند است. از مهمترین گروه های این نوع مصالح میتوان به آلیاژهای هوشمند حافظه دار، که در اصطلاح به آن     SMA(Shape memory alloy) گفته میشود اشاره کرد . این نوع آلیاژها به علت دارا بودن تغییر شکل ماندگار ناچیز، از یک طرف باعث جلوگیری از آسیب زیاد به سازه در حین وقوع زلزله می شوند و از طرف دیگر با دارا بودن خاصیت ترمیم پذیری بالا امکان بهره برداری از سازه  را پس از وقوع زلزله فراهم می کنند.با توجه به نوین بودن این مصالح تحقیقات بسیار اندکی روی آن صورت گرفته و در صنعت ساختمان سازی کمتر مورد توجه قرار گرفته است.در این پایان نامه سعی بر آن شده است که ضمن معرفی بیشتر این نوع مصالح و مکانیزم عملکرد آنها ،قدرت بازگردانندگی SMAها پس از تغییر شکل که به صورت نسبت تغییر شکل ماندگار پس از وقوع زلزله به ماکزیمم تغییر شکل تجربه شده در طول زلزله محاسبه میشود،  بررسی گردد. به علاوه، میزان تاثیر شتاب زلزله بر نحوه عملکرد SMA  ها مورد ارزیابی قرار گرفته است.به این منظور یک سیستم یک درجه آزادی از این آلیاژ به صورت قطعه ای از یک بادبند در نرم افزار SAP و به صورت المان های link(ترکیبی از المان های ME و PW) مدل گردید.  مدل طراحی شده تحت بار102 زلزله مختلف با PGA بین o.2g تا  0.8g به روش تحلیل دینامیکی غیر خطی تاریخچه زمانی تحلیل شده و قدرت بازگردانندگی این قطعه بررسی گردید.

که در نهایت مشخص شد آلیاژهای حافظه شکل سوپر الاستیک این قابلیت را دارند که به طور میانگین حدود 86 درصد از تغییر شکل ایجاد شده در طول زلزله را بازگردانده و تنها حدود 14 درصد آن را جذب کنند که این مقدار نیز تا حدود زیادی با اعمال گرما از بین رفته و آلیاژ حافظه دار به نزدیکی شکل اولیه اش باز می گردد .در نتیجه ، استفاده از این آلیاژهای هوشمند در طراحی ساختمان ها کمک شایانی به کاهش اثرات تخریبی زلزله می تواند داشته باشد.

فصل اول: مقدمه و کلیات تحقیق

در این فصل ابتدا به معرفی آلیاژهای هوشمند حافظه شکل و خواص آنها پرداخته و در ادامه به بیان اهداف و ساختار پایان نامه می پردازیم.

1-1- معرفی آلیاژهای حافظه شکل

از زمان توجه به زلزله و اثرات مخرب آن در سازه های مختلف سالهاست که می گذرد و همچنان زلزله به عنوان یکی از مخربترین حوادث طبیعی معرفی می شود.

طراحی ایمنی ساختمان ها در برابر زلزله همچنان یکی از پرحاشه ترین زمینه هائی است که مهندسی سازه با آن مواجه است، اما باافزایش دانش و اطلاعات نسبت به فعالیتهای لرزه ای و پاسخ های سازه ای و با دسترسی به فناوری جدید تمرکز فکری طراحان تغییر پیدا کرده است.خرابی بسیاری از سازه های طراحی شده با روش های سنتی و همچنین پیشرفت روش های تحلیلی و بهبود چشمگیر عملکرد یارانه ها از جمله عوامل تغییر در فلسفه طراحی سازه ها در سالهای اخیر بوده اند.امروزه ثابت شده که طراحی سازه ها به صورتی که برای مقابله با زلزله های شدید رفتار کاملاً الاستیک داشته باشند از لحاظ اقتصادی مقرون به صرفه نمی باشد. امروزه به جای  طراحی ساده جهت جلوگیری از تخریب سازه ها سعی طراحان بر آن است که در مدت زمان وقوع زلزله از پدید آمدن خسارت سازه ای ماندگار در سازه جلوگیری کنند و حتی بهره برداری از سازه را پس از وقوع زلزله امکان پذیر سازند.

در نتیجه در طراحی سازه ها از روش هائی مانند کنترل غیر فعال سازه ها در برابر زلزله استفاده می شود. در این روش برخی اعضای سازه ای خسارت هائی را در هنگام زلزله شدید متقبل می شوند تا بدین وسیله تنش(تلاش) های وارد بر اعضای اصلی مانند ستون ها کاهش یافته و از این طریق سازه از آسیب عمده در امان بماند.

یکی از شیوه های جدید کنترل سازه ها در برابر زلزله استفاده از سیستم های هوشمند است.

سیستم های هوشمند در سازه های مهندسی سیستم هائی هستند که به طور خودکار قابلیت انطباق رفتار سازه در پاسخ به بارگذاری غیر مترقبه  را دارا می باشند تا بدین وسیله ایمنی ، افزایش عمر و کارائی سازه تامین گردد.

یکی از تکنولوژی های جدید که امکان دستیابی به این هدف را میسر می سازد ، ساخت و توسعه مواد هوشمند است.

این مطلب را هم بخوانید :

 

مواد هوشمند موادی هستند که موقعیت ها را به خاطر می سپارند و با محرک های مشخص می توانند به آن موقعیت بازگردند. یعنی در شرایط مختلف محیطی تغییر فیزیکی پیدا می کنند. به عبارت دیگر می توان گفت مواد و سازه های هوشمند اشیائی هستند که شرایط محیطی را حس میکنند و با پردازش اطلاعات بدست آمده نسبت به محیط واکنش نشان می دهند.

در اکثر موارد این مواد از توانائی پاسخ به بیش از یک شرایط محیطی برخوردار هستند و پاسخ آنها قابل پیش بینی است.

دسته مهم و معروفی از مواد هوشمند فلزهائی هستند که به آلیاژهای حافظه دار (SMA)[1] معروفند.

هوشمند بودن این مصالح از آن جهت است که می توانند در فازهای متفاوت رفتاری ، پاسخ های  متفاوتی از خود نشان دهند. این مصالح هوشمند نه تنها به دلیل خاصیت میرائی خود باعث اتلاف انرژی در هنگام زلزله می شوند بلکه این قابلیت را دارند که بعد از وارد شدن زلزله سازه را به حالت اولیه برگردانند.

سه ویژگی ممتاز این مواد عبارتست از:حافظه داری ، سوپر الاستیسیته و قابلیت میرائی بالا.

الف) حافظه داری[2]  : SMA ها دارای نوعی خاصیت تعلیم پذیری می باشند که به آن اصطلاحاً اثر حافظه شکل می گویند. اثر حافظه شکل عبارت است از قابلیت بازیافت یک شکل معین وقتی که به آلیاژ تا دمای  معینی حرارت داده شود.

یعنی اگر SMA ها با ترکیب شیمیائی مشخص تحت عملیات حرارتی مناسبی قرار گیرند توانائی بازگشت به شکل یا اندازه از قبل تعیین شده را از خود نشان می دهند.

این مواد را حافظه دار می نامند زیرا می توان آنها را به هر شکلی درآورد و سپس با یک عامل خارجی (مانند گرم کردن یا جریان الکتریسیته) به حالت اولیه بازگرداند.به همین دلیل گفته می شود که این مواد شکل اولیه خود را به خاطر می آورند.

پس اینکه SMA ها حافظه دار هستند یعنی قابلیت ذخیره سازی انرژی مکانیکی و نیز آزادسازی آن را دارا هستند.

ب) قابلیت میرائی بالا[3]  هنگامی که ساختمان ها در معرض زلزله یا امواج تحریک ناشی از انفجار قرار می گیرند ضروری است بخشی از محتوای انرژی تحمیل شده  به سازه از طریق مسیرها و فرایندهای مشخص و دارای ظرفیت جذب انرژی کافی به شیوه ایمن و با کمترین خسارت ممکن مستهلک گردد تا از تاثیرات مخرب یک چنین پدیده ای با الگوهای بارگذاری نا مشخص و غیر قابل پیش بینی کاسته شود.

آلیاژهای حافظه دار شکلی نسبت به سیستم های متداول مستهلک کننده انرژی دارای مزایا و ویژگی های منحصر به فردی هستند که از آن جمله می توان به عدم نیاز به تعویض پس از زلزله ، مقاومت بالا در برابر خوردگی و خستگی ، ظرفیت شکل پذیری بالا، ظرفیت میرائی بالا، دوام ، قابلیت بازگشت به حالت اولیه به وسیله اعمال دما و تحمل کرنش بدون باقی گذاشتن کرنش پسماند اشاره کرد.

ج) سوپر الاستیسیته[4] :از جمله مهمترین خصوصیات این آلیاژها عدم باقی ماندن تنش و کرنش پس ماند بعد از انجام بارگذاری لرزه ای است.یعنی بعد از اینکه این آلیاژ در اثر بارگذاری لرزه ای جاری شدو انرژی لرزه ای را مستهلک نمود توانائی بازگشت به حالت اولیه را دارد. البته این امر در برخی از فازهای این آلیاژ میسر است.

این آلیاژها در بیشتر موارد شامل Cu-Al-Niو Cu-Zn-Alو Ni-Tiهستند که ما در این پایان نامه خواص آلیاژ Ni-Ti  را بررسی می کنیم.

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...

 [ 08:23:00 ق.ظ ]




1-2-3 روش الکتریکی- حرارتی………………………………… 4

1-3- مصالح و تجهیزات………………………………………….. 4

1-3-1 بتن…………………………………………………………. 4

1-3-2 فولاد………………………………………………………… 4

1-3-3 انواع گیرها و کابل ها…………………………………….. 4

1-4- معیار اساسی پیش تنیدگی……………………………… 4

1-4-1 بتن پیش تنیده…………………………………………….. 7

1-4-2 مزیت بتن پیش تنیده……………………………………… 8

1-5- روش های پیش تنیدگی …………………………………..10

1-5-1 پیش کشیدگی…………………………………………… 10

1-5-2 پس کشیدگی……………………………………………. 11

1-6- تاثیر پیش تنیدگی روی تنش های مقطع………………. 12

1-7- پیش تنیدگی جزئی……………………………………….. 13

1-7-1 پیش تنیدگی کامل………………………………………. 13

1-7-2 پیش تنیدگی جزیی……………………………………… 13

1-8- مواد مرکب FRP……………………………………………

1-9- محدودیت مقاوم سازی…………………………………… 14

1-10- حداقل مقاومت سطح بتن………………………………. 14

1-11- دلایل ترمیم و تقویت سازه ها………………………….. 14

1-12- نیاز به بهسازی و مقاوم سازی …………………………15

1-13- روش های ترمیم و تقویت سازه بتنی………………… 15

1-14- ساختار مواد مرکب………………………………………. 15

1-15- آشنایی با مواد مرکب……………………………………. 16

1-16- روش های ترمیم و تقویت تیرهای بتنی………………. 16

1-17- انواع مواد مرکب………………………………………….. 16

1-18- انواع محصولات frp………………………………………

1-19- انواع الیاف………………………………………………… 18

1-20- انواع پلیمرها……………………………………………… 18

 

1-21- مزیت استفاده از FRP  در ترمیم سازه بتنی…………. 19

1-22- پیشینه تحقیق………………………………………….. 19

فصل دوم: کلیات و مفاهیم

2-1- مشخصات مصالح مصرفی……………………………….. 22

2-1-1 مقاومت بتن……………………………………………… 22

2-1-1-1 اهمیت فولاد با مقاومت بالا…………………………. 23

2-2- فولادهای پیش تنیدگی…………………………………… 24

2-2-1 وایر…………………………………………………………. 24

2-2-2 رشته……………………………………………………… 25

2-2-3 میلگرد…………………………………………………….. 25

2-3- رفتار سازه………………………………………………….. 25

2-4- رفتار تیرهای پیش تنیده در محدوده الاستیک………….. 25

2-4-1 تعادل داخلی……………………………………………… 27

2-5- نیروی پیش تنیدگی………………………………………. 29

2-6- افت های در نیروهای پیش تنیدگی……………………… 29

2-7- اصول کلی محاسبات افت…………………………………. 30

2-7-1 محاسبات افت ناشی از کوتاه شدگی الاستیک بتن…..30

2-7-2 افت کوتاه مدت …………………………………………….31

2-7-2-1 محاسبه افت ناشی از اصطکاک…………………….. 31

2-7-3 افت کشش در محل گیره (کوتاه مدت) ………………….32

2-7-4 افت دراز مدت……………………………………………… 33

2-7-4-1 افت ناشی از جمع شدگی بتن………………………. 33

2-7-4-2 افت های ناشی از وارفتگی بتن……………………… 33

2-7-4-3 افت ناشی از وادادگی فولاد پیش تنیدگی………….. 33

2-7-5 افت ناشی از خزش………………………………………. 34

2-8- مجموع افت های پیش تنیدگی ……………………………35

2-9- انواع پیش تنیدگی…………………………………………. 35

2-10- خصوصیات مصالح FRP……………………………………

این مطلب را هم بخوانید :

 

2-10-1 خصوصیات فیزیکی……………………………………… 35

2-10-1-1 چگالی…………………………………………………. 35

2-10-1-2 ضریب انبساط حرراتی……………………………….. 36

2-10-2 خصوصیات مکانیکی مصالح FRP……………………….

2-10-2-1 رفتار کششی………………………………………… 36

2-10-2-2 رفتار فشاری…………………………………………… 37

فصل سوم: بررسی های آزمایشگاهی و تئوری

3-1- مقدمه………………………………………………………. 40

3-2- نمودارهای تنش و کرنش فولاد پیش تنیده و فولاد معمولی..42

3-3- تعیین تنش در فولاد های پس تنیده بدون پیوستگی……42

3-4- بررسی مطالعات گذشته………………………………….. 43

3-5- روابط آیین نامه ای …………………………………………..46

3-6- مقادیر حاصل از آزمایشگاه و مقایسه با روابط موجود……48

3-7- نتیجه گیری………………………………………………….. 49

3-8- شکل پذیری ………………………………………………….49

3-8-1 شکل پذیری مصالح ……………………………………….49

3-8-2 شکل پذیری عضو…………………………………………. 50

3-9- نتایج آزمایشگاهی…………………………………………. 51

3-10- باز پخش لنگر……………………………………………… 51

3-11- مدل های شکست و بار نهایی…………………………. 52

3-11-1 ظرفیت باربری نهایی و آزمایشگاهی تیرها………….. 53

3-11-2 مد شکست…………………………………………….. 53

فصل چهارم: طراحی خمشی

4-1- طراحی خمشی………………………………………….. 55

4-2- طرحی خمشی بر اساس تنش های………………….. 56

4-2-1 تیرها با خروج از مرکزیت پیش تنیدگی ثابت………….. 58

4-3- طراحی خمشی بر اساس بالانس بار………………….. 58

4-4- کنترل ترک………………………………………………….. 61

4-5- مقایسه دهانه ساده با پیوسته………………………… 61

4-6- پروفیل تاندون ها وترتیب تنش ها……………………….. 62

4-7- حالت کلی طراحی………………………………………… 64

4-7-1 مقادیر حداکثر کشش در کابل ها……………………… 64

4-7-2 حالت نهایی………………………………………………. 64

4-8- جزئیات اجرایی…………………………………………….. 64

4-8-1 مسیر کابل …………………………………………………65

4-8-2 محل قرارگیری کابل………………………………………. 65

4-9- ضوابط آرماتورهای معمولی………………………………. 66

فصل پنجم: معرفی اجزاء محدود و نرم افزار آباکوس

5-1- مفاهیم اجزاء محدود………………………………………. 68

5-2- مراحل کلی اجزاء محدود………………………………….. 68

5-2-1 تقسیم بندی و انتخاب نوع المان ها …………………..68

5-2-2 انتخاب تابع جابجایی……………………………………..69

5-2-3 تعریف روابط کرنش- جابجایی و تنش- کرنش…………..69

5-2-4 استخراج روابط و ماتریس ساختمان المان………………69

5-2-5 برهم گذاری معادلات المانها به منظور دست یابی به معادلات  کلی یا اصلی و معرفی شرایط مرزی..70

5-2-6 تعیین درجه های آزادی مجهول(جابجا های کلی)………70

5-2-7  محاسبه تنش ها و کرنش المان……………………….. 70

5-2-8 تفسیر نتایج………………………………………………… 70

5-3- استخراج معادلات تیر………………………………………. 71

5-4- کاربرد اجزائ محدود………………………………………… 73

5-5- مزایای اجزاء محدود …………………………………………73

5-6- برنامه آباکوس ………………………………………………74

5-7- مزیت استفاده از نرم افزار آباکوس………………………. 74

5-8- آشنایی کلی با نرم افزار آباکوس……………………….. 76

5-9- استفاده از فایل ورودی ……………………………………..76

5-10- مراحل طراحی تیر با استفاده از نرم افزار اجزاء محدود…78

فصل ششم: تحلیل و نتیجه گیری

6-1- مقایسه نتایج آزمایشگاهی تیرهای پس تنیده یکسره با روش مدل سازی آباکوس..88

6-2- مدل سازی تیر پس تنیده تقویت شده با CFRP…………

6-3- نتیجه گیری………………………………………………….. 99

6-4- پیشنهادات…………………………………………………. 100

منابع و مآخذ…………………………………………………….. 101

فهرست منابع فارسی…………………………………………. 101

فهرست منابع انگلیسی……………………………………….. 102

پیوست…………………………………………………………… 107

چکیده انگلیسی …………………………………………………115

چکیده:

امروزه مواد کامپوزیت یا مواد مرکب (FRP) به عنوان یکی از پیشرفته ترین  و کاربردی ترین مواد در جهان صنعتی تلقی می شود و همچنین رشد و تکنولوژی این مواد در حال افزایش است. صنعت و تکنولوژی این مواد در کشور به عنوان یک صنعت نو مطرح است. استفاده از سازه های بتنی در ایران روبه افزایش  است و بدلائل مختلف از جمله تغییر کاربری سازه ها و بازنگری آیین نامه های بارگذاری، تیر سراسری اغلب نیاز به ترمیم و تقویت دارند. همچنین پیش تنیده کردن سازه های بتنی باعث افزایش ظرفیت خمشی این گونه تیرها شده و باعث افزایش مقاومت سازه و افزایش طول دهانه تیرها می شود. که هم از لحاظ اقتصادی و هم از لحاظ سازه ای مقرون به صرفه است. نیاز به ترمیم و تقویت و افزایش ظرفیت خمشی اعضای بتنی را می توان با  روشهای استفاده از مواد مرکب انجام داد. استفاده از مواد مرکب در ساختمان های بزرگ و تجاری و ابنیه های تاریخی که و هزینه تخریب و بازسازی آنها زیاد است، مورد توجه می باشد. باتوجه به زلزله خیز بودن کشور،  نیاز به تقویت سازه ها در برابر زلزله می باشد، این طرح این امکان را بوجود می آورد که بدون تخریب سازه با تقویت به وسیله مواد مرکب، مقاومت مورد نیاز را برای بهره برداری مجدد از سازه امکان پذیر سازد. پژوهش حاضر، جهت مدل سازی و ارزیابی تیرهای I – شکل سراسری (نامعین) پس تنیده با فولادهای بدون پیوستگی تقویت شده با ورق FRP  انجام شده. بدین منظور  از نرم افزار آباکوس استفاده شده و نتایج حاصل با نتایج آزمایشگاهی مقایسه شده است.

فصل اول: کلیات تحقیق

1-1- مقدمه

پیش تنیدگی[1] عبارت است از:  ایجاد یک تنش ثابت و دائمی در یک عضو بتنی به نحوه دلخواه و به اندازه لازم به طوری که، در اثر این تنش مقداری از تنش های ناشی از بارهای مرده و زنده عضو، خنثی شده در نتیجه مقاومت و باربری آن افزایش می یابد. بتن پیش تنیده پس از بتن مسلح در  فرم های ساختمانی به کار گرفته شده  است. در قرن گذشته چندین الگو پیش تنیدگی متفاوت ارائه شده است، اثرات طولانی مدت تنش و انقباض باعث کاهش نیروی پیش تنیدگی می شود، و مزیت و کاربرد بتن پیش تنیده را کاهش می دهد، که این امر با استفاده از فولاد با مقاومت بالا تا حدی قابل جبران است (بیلینگتون 1976، 84-71).

2-1- روش های وارد کردن نیروی پیش تنیدگی

1-2-1- روش مکانیکی

شاید ساده ترین روش فشرده ساختن یک تیر به وسیله یک یا دو جک در مقابل دو تکیه گاه می باشد. این روش در بعضی از پروژه های بزرگ به  کار می رود در بعضی از پروژها می توان  پس از فشرده ساختن تیر بوسیله جک با قرار دادن ورق فولادی بین تیر و تکیه گاه جلو برگشت تیر را به حالت اولیه گرفت، سپس جک ها را آزاد کرد.  اشکال اساسی این روش ها این است که کوچکترین تغییر شکل یا حرکت تکیه گاه، به نحوه قابل ملاحظه ای نیرو را  کاهش می دهد.

2-2-1- روش شیمیایی

در این روش نیروی پیش تنیدگی در اثر استفاده از سیمان های منبسط شونده بوجود می آید. این سیمان ها بر خلاف سیمان های معمولی در موقع گرفتن و سخت شدن به جای منقبض شدن منبسط می گردند، چون وجود کابلهای در داخل بتن جلوی این انبساط طول را می گیرد، در نتیجه مقدار نیروی فشاری در تیر ایجاد می شود.

3-2-1- روش الکتریکی – حرارتی

در این روش با وصل کردن جریان برق به کابلها باعث ازدیاد طول کابلها شده، سپس کابلها را توسط گیره هائی در همان حال کشیده به تکیه گاه وصل می کنند. پس از قطع کردن جریان و سرد شدن کابل ها، دور آنها را بتن ریزی می کنند و بعد از اینکه مقاومت بتن به حد لازم رسید کابل های کشیده شده را از تکیه گاه آزاد می کنند و در نتیجه نیروی کشیده شدن کابل ها به بتن منتقل می گردد، روش پیش تنیدگی حراراتی به طور وسیعی برای ساختن دالها، تیرها، خرپاها و ستون های چراغ برق مورد استفاده قرار می گیرد (دوبل 1936، 20-9).

3-1- مصالح و تجهیزات

1-3-1- بتن

مقاومت بتن در سازه های پس تنیده می بایست از مقاومت و کیفیت بهتری نسبت به بتن در سازه های ساخته شده از بتن مسلح معمولی، برخوردار باشد. زیرا بالا بودن مقاومت بتن باعث ایجاد گیرش و چسبندگی بهتر بین کابل ها و بتن می شود.

2-3-1- فولاد

فولادهای پیش تنیدگی شامل مفتول ها و کابل های[1] ساخته شده از مفتول یا میلگردهای آلیاژ[2] دار پر مقاومت می باشند.

3-3-1- انواع گیرها و کابل ها

گیره استرند فورس

4-3-1- معیار اساسی پیش تنیدگی

معیار طراحی بتن آرمه چه برای نوع پیش تنیده و چه برای غیر پیش تنیده این است که:

در جایی که در اثر بارگذاری خارجی، کشش ایجاد شود، آرماتور فولادی قرار گیرد، در بتن پیش تنیده آرماتور با مقاومت بالا، به کار می رود و این آرماتور قبل از اعمال بار خارجی کشیده می شود. این کشیدگی اولیه آرماتور بتن مجاور خود را پیش فشرده می کند و باعث می گردد که این بتن بتواند بار بیشتری را قبل از ترک خوردگی تحمل نماید.

در بتن پیش تنیده هیچ تنش و کرنشی چه در فولاد چه در بتن قبل از اعمال بار وجود ندارد. برای ترک دادن بتن در چنین تیری احتیاج به بار نسبتا کمی می باشد. قبل از ترک خوردگی، تنش های کششی ایجاد شده در آرماتور در تیر بسیار کوچک می باشد.

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...

 [ 08:23:00 ق.ظ ]