3-4-2-3 Similarity Detection. 45

3-4-2-4 Distance Transform Matching. 45

3-4-3 آشکارسازی علامت با استفاده از شکل ورنگ… 46

3-4-4 آشکارسازی بر اساس یادگیری ماشین.. 47

4-شناسایی علایم ترافیکی.. 49

4-1 مقدمه. 49

4-2 شناسایی اشکال توسط ماشین.. 49

4-2-1 مشکلاتی که در این راه وجود دارند. 50

4-2-1-1 چرخش،بازتاب(آینه)،ترجمه،تغییر مقیاس… 51

4-3 الگوریتمهای شناخت علایم ترافیکی.. 52

4-3-1شبکه های عصبی.. 53

4-3-1-1 شبکه های پس انتشار. 54

4-3-1-2 پرسپترون چند لایه. 54

4-3-2 تطبیق الگو. 55

4-3-3 کلاس بندی با PSO.. 56

4-3-4 کلاس بندی با SVM… 57

4-3-5 شناخت علایم ترافیکی توسط OCR and pictogram.. 61

5-طراحی و پیاده سازی سیستم وارزیابی آن. 62

این مطلب را هم بخوانید :

 

 

5-1 مقدمه. 62

5-2آشکارسازی علامت بوسیله ،تجزیه وتحلیل لکه. 62

5-2-1 تعریف لکه. 62

5-2-2شناسایی مناطق مورد علاقه: 65

5-2-3فیلترهای میانه دوبعدی.. 66

5-2-4 استخراج لبه های اشیا: 68

5-2-5 حذف لکه های زاید. 70

5-2-5-1تجزیه وتحلیل هیستوگرام رنگها 72

5-2-5-2 تجزیه وتحلیل ابعاد علامت: 74

5-2-6بلوک دیاگرام آشکارسازی علایم ترافیکی : 77

5-2-7 نتایج بدست آمده برای بخش آشکارسازی علایم ترافیکی.. 77

5-3 شناسایی علایم ترافیکی: 79

5-3-1شیوه ای بازگشتی برای تقسیم بندی شکل براساس بردار ویژه. 79

5-3-1-1 محاسبه ماتریس کواریانس: 79

5-3-1-2 استخراج دو مقدار ویژه. 80

5-3-1-3 ناحیه بندی شکل بر اساس بردارهای ویژه. 81

5-3-1-4 محاسبه مقادیر ویژه وبردارهای ویژه؛ زیر ناحیه ها 82

5-3-1-5 محاسبهbounding-box: 83

5-3-2 استخراج پارامترهای مستقل از مقیاس،انحراف،دوران. 83

5-3-2-1پارامتر (eigen-ratio) 84

5-3-2-2 پارامتر (compactness) 84

5-3-2-3 پارامتر (normal-angle) 85

5-3-2-4 پارامتر(center) 86

5-3-3 آزمایش مستقل بودن پارامترها(دوران،انتقال،مقیاس) 87

5-3-4 تقسیم بندی علایم ترافیکی بر اساس شکل ظاهری ورنگ آنها 91

5-3-5 شناسایی شکل کلی علایم ترافیکی،توسط شبکه های عصبی.. 96

5-3-6 آموزش شبکه های عصبی.. 97

5-3-6-1 آموزش شبکه عصبی برای شناسایی شکل کلی علامت.. 98

5-3-6-2 آزمایش صحت کلاس بندی در شبکه عصبی.. 99

5-3-7 شناسایی پیام علامت.. 102

5-3-8 بلوک دیاگرام سیستم شناسایی علایم ترافیکی بوسیله شبکه عصبی.. 104

5-3-9 نتایج شناسایی علایم ترافیکی.. 105

5-4 تعیین محل نصب علامت و ارزیابی آن. 106

5-4-1 سیستم موقعیت یاب جهانی چگونه کار میکند. 107

5-4-2 محاسبه محل نصب  علامت.. 109

5-4-3 ارزیابی علامت ترافیکی.. 111

5-4-4 رسم نقاط بر روی نقشه. 112

5-4-4-1 سیستم اطلاعات جغرافیای(GIS) 112

5-4-4-2 تجزیه وتحلیل World file. 114

5-4-5-2 رسم یک نقطه جغرافیایی.. 120

5-4-5 نتیجه اجرای کلی  الگوریتم وارزیابی نقاط بدست آمده. 123

6-نتایج وپیشنهادات.. 128

7-منابع. 129

8-چکیده انگلیسی.. 137

1-مقدمه

 ابتدا در این فصل به معرفی علایم ترافیکی وسیستمی که علایم ترافیکی را شناسایی کند، می پردازیم وسپس کارهایی که برای شناسایی صحیح علامت لازم است ،مورد بررسی قرار خواهد گرفت؛ درنهایت هم ساختار این پایان نامه را توضیح می­دهیم.

1-1-دلایل احساس نیاز به سیستم شناسایی علایم ترافیکی

تمایل انسان­ها به آسایش هرچه بیش­تر و حمل و نقل آسان، سبب ایجاد وسایل نقلیه زمینی گردیده است. با رشد جمعیت، هر روزه به تعداد وسایل نقلیه‌ای كه در خیابان‌ها وجاده‌ها تردد می‌كنند افزوده می‌شود. با توجه به این تعداد بی‌شمار وسایل نقلیه، نیاز به كنترل آنها به منظور جلوگیری از تصادفات تا حد ممكن و در نتیجه كاهش تلفات جانی و مالی فراوان كاملاً احساس می‌شود. بخش عمده‌ای از وظیفه كنترل و هدایت وسایل نقلیه در خیابان‌ها و جاده‌ها توسط علائم راهنمایی و رانندگی صورت می­گیرد. بنابراین مشاهده علائم و عمل كردن به پیام آن ها بوسیله رانندگان ضروری و مهم می‌باشد. با توجه به اهمیت این مسأله اگر بتوان سیستم خودكاری برای تشخیص علائم واعلام پیام آن­ها به رانندگان طراحی نمود، كمك زیادی به آرامش رانندگان خواهد کرد و عبور ومرور روان خواهد شد و بدین ترتیب كلیه رانندگان بویژه رانندگان مبتدی می‌توانندتمركز بیش­تری بر روی كنترل وسیله نقلیه داشته باشند.

1-1-2 علایم ترافیکی

علایم راهنمایی و رانندگی مانند انواع چراغ ها، تابلوها، خط کشی ها، نوشته ها، ترسیم ها ونیز علایم تعیین سمت عبور که باید روی راه ها کشیده شود، براساس قانون الحاق ایران به کنوانسیون عبور ومرور در جاده و کنوانسیون مربوط به علایم راهها-مصوب 1354 تهیه شده اند. تشخیص، انتخاب، تهیه، جانمایی، نصب ، ترسیم و نگهداری علایم عمودی و افقی راهنمایی و رانندگی درشهرها بر اساس

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...