1-2-2 میکسرهای غیر فعال …………………………………………………………………………………… 22 …………………….
2-2-2 میکسر گیلبرت ………………………………………………………………………………………………………………….. 24
3-2 کاربرد میکسر …………………………………………………………………………………………………………………………… 28
4-2 عملکرد میکسر …………………………………………………………………………………………………………………………. 29
1-4-2 میکسر به عنوان یک ضرب کننده …………………………………………………………………………………….. 29
2-4-2 عملکرد میکسر به کمک یک سوئیچ …………………………………………………………………………………. 30
.3  فصل سوم: بررسی میکسرهای توزیع شدهی فراپهن باند …………………………………………………… 32
1-3 مقدمه ………………………………………………………………………………………………………………………………………. 33
2-3 مدارات توزیع شده ……………………………………………………………………………………………………………………. 34
3-3 بررسی عملکرد سیگنال بزرگ میکسر گیلبرت به عنوان یک عنصر غیر خطی …………………………. 35
4-3 میکسر سلول گیلبرت توزیع شده …………………………………………………………………………………………….. 39
1-4-3 بهرهی تبدیل …………………………………………………………………………………………………………………….. 40
2-4-3 تکنیک تزریق جریان …………………………………………………………………………………………………………. 40
3-4-3 تکنیک پیکینگ سلفی ………………………………………………………………………………………………………. 42
5-3 مروری بر چند ساختار میکسر پهن باند ارایه شده ……………………………………………………………………. 44
1-5-3 ساختار میکسر ………………………………………………………………………………………………………[18] 1 44
2-5-3 ساختار میکسر ………………………………………………………………………………………………………[12] 2 45
3-5-3 ساختار میکسر ………………………………………………………………………………………………………[19] 3 45
4-5-3 ساختار میکسر ………………………………………………………………………………………………………[20] 4 46
5-5-3 ساختار میکسر ………………………………………………………………………………………………………[21] 5 47
6-5-3 ساختار میکسر ………………………………………………………………………………………………………[22] 6 48
7-5-3 ساختار میکسر ………………………………………………………………………………………………………[23] 7 49
8-5-3 مقایسه ساختار های متفاوت میکسرهای فراپهن باند ………………………………………………………. 51
.4   فصل چهارم: تحلیل اعوجاج و نویز در میکسر فراپهن باند …………………………………………………. 52
1-4 مقدمه ………………………………………………………………………………………………………………………………………. 53
2-4 میکسر یک عنصر غیر خطی …………………………………………………………………………………………………….. 53
3-4 مدل غیر خطی گیرنده …………………………………………………………………………………………………………….. 54
4-4 اثرات اعوجاج در سیستمهای فراپهن باند ………………………………………………………………………………… 54
1-4-4 تولید هارمونیک …………………………………………………………………………………………………………………. 55
2-4-4 فشردگی بهره …………………………………………………………………………………………………………………….. 55
3-4-4 اینترمدولاسیون …………………………………………………………………………………………………………………. 56
4-4-4 اینترمدولاسیون مرتبهی دوم ……………………………………………………………………………………………. 56

 

 

 

5-4-4 اینترمدولاسیون مرتبهی سوم …………………………………………………………………………………………… 57
6-4-4 اعوجاج در سیستمهای متوالی ………………………………………………………………………………………….. 59
7-4-4 مشخصات خطی گیرنده ……………………………………………………………………………………………………. 59
5-4 بررسی نویز میکسر به عنوان یک عنصر غیر خطی …………………………………………………………………… 60
1-5-4 پردازش نویز متغیر با زمان ……………………………………………………………………………………………….. 60
2-5-4 نویز طبقهی راهانداز (طبقهی ……………………………………………………………………………………(RF 61
3-5-4 نویز طبقهی سوئیچ (طبقهی ……………………………………………………………………………………(LO 62
4-5-4 نویز طبقهی ………………………………………………………………………………………………………………….IF 63
.5   فصل پنجم: مدار پیشنهادی، طراحی مخلوط کنندهی فرکانسی فراپهن باند توزیع شده ………. 64
1-5 مقدمه ………………………………………………………………………………………………………………………………………. 65
2-5 مدل المانهای مورد استفاده ……………………………………………………………………………………………………. 65
3-5 تحلیلگرهای استفاده شده در نرمافزار ………………………………………………………………………….ADS 67
1-3-5 تحلیلگر ……………………………………………………………………HARMONIC BALANCE 68
2-3-5 تحلیلگر ………………………………………………………………………………………………………………. LSSP 68
4-5 طراحی میکسر توزیع شده با سلولهای میکسر تک بالانس …………………………………………………….. 69
1-4-5 طراحی میکسر …………………………………………………………………………………………………………………… 69
2-4-5 بایاس مدار …………………………………………………………………………………………………………………………. 70
3-4-5 پارامترهای قابل تغییر و طراحی ……………………………………………………………………………………….. 71
4-4-5 تحلیل و شبیهسازی ………………………………………………………………………………………………………….. 72
5-5 طراحی میکسر توزیع شده با سلولهای میکسر سلول گیلبرت ………………………………………………… 74
1-5-5 طراحی میکسر …………………………………………………………………………………………………………………… 74
2-5-5 بایاس مدار …………………………………………………………………………………………………………………………. 75
3-5-5 تحلیل و شبیهسازی ………………………………………………………………………………………………………….. 76
6-5 طراحی میکسر توزیع شده با سلولهای میکسر گیلبرت و با استفاده از تکنیک پیکینگ سلفی.. 78
1-6-5 تکنیک پیکینگ سلفی ………………………………………………………………………………………………………. 78
2-6-5 بایاس مدار …………………………………………………………………………………………………………………………. 80
3-6-5 طراحی میکسر توزیع شدهی نهایی …………………………………………………………………………………… 80
4-6-5 مقادیر المانهای مدار میکسر پس از طراحی …………………………………………………………………… 84
5-6-5 تحلیل و شبیه سازی …………………………………………………………………………………………………………. 86
7-5 نتیجهگیری و مقایسه ………………………………………………………………………………………………………………. 90
.6   فصل ششم: نتیجهگیری و پیشنهادات ………………………………………………………………………………. 92
1-6 نتیجهگیری ………………………………………………………………………………………………………………………………. 93

 

2-6 پیشنهادات ……………………………………………………………………………………………………………………………….. 94
.7   فصل هفتم: منابع و ماخذ ………………………………………………………………………………………………….
این مطلب را هم بخوانید : 95
منابع لاتین ………………………………………………………………………………………………………………………………………………… 96
چکیده انگلیسی: ……………………………………………………………………………………………………………………………………………. 98

فهرست جدول ها:

عنوان                                                                                                 شماره صفحه

جدول 1- 1 قابلیت UWB در مقایسه با سایر استانداردهای 14…………………………………. [2] IEEE

جدول 1- 3 مقایسهی ساختارهای مختلف میکسرهای فراپهن باند………………………………………….. 51

جدول 1- 5 مقادیر سلفهای مدار نهایی………………………………………………………………………. 85

جدول 2- 5 عرض ترانزیستورهای مدار نهایی………………………………………………………………… 85

جدول 3- 5 مقادیر پارامترهای DC ترانزیستورهای میکسر توزیع شده نهایی………………………………. 85

جدول 4-5 مقدار نشت پورت های مختلف میکسر پیشنهادی در یکدیگر بعد از مدل سازی اثر عدم تطبیـق ابعـاد

ترانزیستورها، روی ولتاژ آستانه………………………………………………………………………………………….. 88

جدول 5- 5 مقایسهی سه ساختار به دست آمده طول طراحی………………………………………………. 90

جدول 6- 5 مشخصات مدار میکسر توزیع شدهی پیشنهادی………………………………………………… 90

جدول 7- 5 مقایسه میکسر طراحی شده در این پایان نامه با کارهای انجام شدهی قبلی………………….. 91

فهرست شکلها:

عنوان                                                                                                 شماره صفحه
شکل 1-1 تاریخچهی تکنولوژی فراپهن باند……………………………………………………………………. 6

شکل 2-1 طرح ماسک توان برای سیستم UWB بر حسب فرکانس 7…………………………………….. [3]

شکل 3-1 سیگنال باند باریک در حوزهی (a) زمان و (b) فرکانس………………………………………….. 8

شکل 4-1 یک پالس با Duty Cycle کم……………………………………………………………………. 8

شکل 5-1 پالس UWB در حوزههای((a زمان و (b) فرکانس………………………………………………. 9

شکل 6-1 همزیستی سیگنالهای فراپهن باند با سیگنالهای باند باریک و باند پهن در طیف فرکانسی 10.. RF

شکل (a) 7-1 پدیدهی چند مسیره در انتقال بیسیم (b) اثر پدیدهی چند مسیره بر سیگنال های بانـد باریـک

© اثر پدیدهی چند مسیره بر سیگنالهای باند فرا پهن………………………………………………………………… 11

شکل 8-1 رفتار حوزههای زمان و فرکانس سیگنالهای UWB (a) و (b) باند باریک……………………… 13

شکل 9-1 طیف فرکانسی UWB به همراه سیستمهای تداخلی داخل و خارج باند………………………… 14

شکل 10-1 سیگنالهای (a) باند باریک، (b) طیف گسترده و © فراپهن باند در حوزههای زمان و فرکانس .. 16

شکل 11-1 روش دسترسی 16……………………………………………………………………….. TDMA

شکل 12-1 عملیات کد کردن در 17……………………………………………………… [5] DS-CDMA

شکل 13-1 نحوهی استفاده از پهنای باند در سیستم 17………………………………………. DS-CDMA

شکل 14-1 گروه بندی طیف فرکانسی 18…………………………………………………….. MB-OFDM

شکل 15-1 طیف فرکانسی 18……………………………………………………………. [7] MB-OFDM

شکل 1-2 ساختار گیرنده سوپر هترودین……………………………………………………………………. 20

شکل 2-2 میکسر به عنوان یک عنصر سه دهانه…………………………………………………………….. 21

شکل 3-2 میکسر غیرفعال با تعادل دوگانه با 22…………………………………………………….. CMOS

شکل 4-2 میکسر گیلبرت ساده………………………………………………………………………………. 24

شکل 5-2 میکسر گیلبرت با تعادل دوگانه…………………………………………………………………… 25

شکل 6-2 منحنی بهرهی سوئیچ میکسر گیلبرت با تعادل دوگانه…………………………………………… 26

شکل 7-2 میکسر گیلبرت با تعادل دوگانه با تکنیک ربودن جریان 27…………………………………… DC

شکل 8-2 میکسر به عنوان یک ضرب کننده 29……………………………………………………………. [3]

شکل 9-2 میکسر با ساختار تکی…………………………………………………………………………….. 31

شکل 10-2 میکسر با ساختار متوازن تکی…………………………………………………………………… 31

شکل 1-3 بلوك دیاگرام مدار ترکیبی توزیع شده (a) موجبر هم محور واقعی (b) مدارات LC مصنوعی33[11]

شکل 2-3 مدل خطوط انتقال مصنوعی………………………………………………………………………. 34

شکل 3-3 شمای نحوهی قرار گیری سلولهای مدار توزیع شده بین دو خط انتقال………………………….. 35

شکل 4-3 میکسر گیلبرت 36…………………………………………………………………………. CMOS

شکل 6-3 شکل موجهای p0(t) و 38…………………………………………………………………….. p1 (t)

شکل 7-3 مدار معادل خط انتقال……………………………………………………………………………. 40

شکل 8-3 شماتیک مدار میکسر گیلبرت با تکنیک تزریق جریان…………………………………………… 41

شکل 9-3 شماتیک مدار میکسر گیلبرت با طبقهی ترارسانایی مکمل………………………………………. 41

شکل 10-3 مدل مدار ساده شده برای (a) میکسر متداول (b) میکسر با تکنیک پیکینگ سلفی سری……. 43

شکل (a) 11-3 مدل سیگنال کوچک یک تقویت کننده (b) شـبکهی پسـیو اضـافه شـده بـرای ایزولـه کـردن

خازنهای پارازیتی © پیاده سازی این شبکه با سلف…………………………………………………………………… 43

شکل 12-3 مدار میکسر ساختار 44…………………………………………………………………………… 1

شکل 13-3 مدار میکسر ساختار 45…………………………………………………………………………… 2

شکل 14-3 مدار میکسر ساختار 46…………………………………………………………………………… 3

شکل 15-3 مدار میکسر ساختار 47…………………………………………………………………………… 4

شکل 16-3 مدار تطبیق UWB برای سیگنال ورودی 47…………………………………………………. RF

شکل 17-3  مدار میکسر ساختار 48………………………………………………………………………….. 5

شکل 18-3 مدار میکسر ساختار 49…………………………………………………………………………… 6

شکل 19-3 مدار میکسر ساختار 50…………………………………………………………………………… 7

شکل 1-4 طیف فرکانسی MB-OFDM به همراه سیستمهای تداخلی داخل و خارج باند 53…………… [7]

شکل (a) 2-4 مدار سوئیچ ساده (b) سیستم غیر خطی متغیر با زمان © سیستم خطی متغیر با زمان….. 54

شکل 3-4 طیف خروجی سیستم غیرخطی با درجهی دو و سه……………………………………………… 54

شکل 4-4 نقطه تراکم 56………………………………………………………………………………….. 1dB

شکل 5-4 مولفههای اینترمدولاسیون در خروجی یک سیستم غیرخطی درجهی 56…………………………. 2

شکل 6-4 نحوهی تداخل اینترمدولاسیون مرتبهی 2 با سیگنال مطلوب 57……………………………….. [7]

شکل 7-4 مولفههای اینترمدولاسیون در خروجی یک سیستم با خاصیت غیرخطی مرتبهی سوم………….. 58

شکل 8-4 تداخل اینترمدولاسیون مرتبهی 3 با سیگنال مطلوب 58……………………………………….. [7]

شکل (a) 9-4 دامنهی نقطه تقاطع مرتبهی سوم ورودی (b) نقطه تقاطع مرتبـهی سـوم ورودی و خروجـی بـه

صورت لگاریتمی 59………………………………………………………………………………….. [5] (IIP3,OIP3)

شکل 10-4 میکسر فعال تک بالانس 61……………………………………………………………… CMOS

شکل 11-4 شکل موج 62………………………………………………………………………………… p1 (t)

شکل 1-5 بلوك دیاگرام مدار توزیع شده (a)خطوط انتقال واقعی (b) پیاده سازی با مدارات LC (خـط انتقـال

مصنوعی)…………………………………………………………………………………………………………………. 65

شکل 2-5 مدل ترانزیستور 66…………………………………………………………………………. TSMC

شکل 3-5 مدل مدار معادل برای یک ترانزیستور 66………………………………………. [26] RF nMOS

شکل 4-5 مدل سلف 67………………………………………………………………………………. TSMC

شکل 5-5 نمای Layout سلف در تراشه……………………………………………………………………. 67

شکل 6-5 مدار معادل یک سلف استاندارد 67…………………………………………………………….. [26]

شکل 7-5 تحلیلگر HARMONIC BALANCE در نرم افزار 68………………………………… ADS

شکل 8-5 تحلیلگر LSSP در نرم افزار 68………………………………………………………………. ADS

شکل 9-5 ساختار میکسر توزیع شدهی تک بالانس…………………………………………………………. 69

شکل 10-5 شماتیک میکسر توزیع شدهی تک بالانس در نرم افزار 70…………………………………. ADS

شکل 11-5 مدار بایاس طبقهی 70…………………………………………………………………………. RF

شکل 12-5 مدار بایاس گیت ترانزیستورهای طبقهی 71…………………………………………………… LO

شکل 13-5 مدار بایاس درین ترانزیستورهای طبقهی 71………………………………………………….. LO

شکل 14-5 روابط به کار رفته در نرمافزار ADS برای محاسبهی 72……………………………………. IIP3

شکل 15-5 نمودار عدد نویز میکسر طراحی شده با سلول تک بالانس……………………………………… 72

شکل 16-5 نمودار IIP3 میکسر طراحی شده با سلول تک بالانس………………………………………… 73

شکل 17-5 نمودار IIP2 میکسر طراحی شده با سلول تک بالانس………………………………………… 73

شکل 18-5 نمودار بهرهی تبدیل میکسر طراحی شده با سلول تک بالانس………………………………… 73

شکل 19-5 نمودار ضریب انعکاس ورودی میکسر طراحی شده با سلول تک بالانس……………………….. 74

شکل 20-5 نمودار ضریب انعکاس خروجی میکسر طراحی شده با سلول تک بالانس………………………. 74

شکل 21-5 ساختار میکسر توزیع شدهی گیلبرت…………………………………………………………… 75

شکل 22-5 شماتیک میکسر توزیع شدهی گیلبرت در نرم افزار 75…………………………………….. ADS

شکل 23-5 نمودار بهرهی تبدیل میکسر طراحی شده با سلول گیلبرت…………………………………….. 76

شکل 24-5 نمودار ضریب انعکاس ورودی میکسر طراحی شده با سلول گیلبرت…………………………… 77

شکل 25-5 نمودار ضریب انعکاس خروجی میکسر طراحی شده با سلول گیلبرت………………………….. 77

شکل 26-5 نمودار عدد نویز میکسر طراحی شده با سلول گیلبرت…………………………………………. 77

شکل 27-5 نمودار IIP3 میکسر طراحی شده با سلول گیلبرت…………………………………………….. 78

شکل 28-5 ساختار میکسر توزیع شدهی گیلبرت با تکنیک پیکینگ سلفی……………………………….. 79

شکل 29-5 ساختار میکسر توزیع شدهی گیلبرت با تکنیک پیکینگ سلفی در نرم افزار 79…………… ADS

شکل 30-5 مدار بایاس درین ترانزیستورهای طبقهی 80………………………………………………….. LO

شکل 31-5 نمودار جریان مصرفی میکسر بر حسب تغییرات عرض ترانزیستورها…………………………… 81

شکل 32-5 نمودار تطبیق ورودی میکسر بر حسب تغییرات عرض ترانزیستورها در فرکانس 82…… 10 GHz

شکل 33-5 نمودار بهرهی تبدیل میکسر بر حسب تغییرات عرض ترانزیستورها…………………………….. 82

شکل 34-5 نمودار IIP3 میکسر بر حسب تغییرات عرض ترانزیستورها…………………………………….. 83

شکل 35-5 نمودار بهرهی تبدیل میکسر بر حسب تغییرات سلفهای پیکینگ در سه فرکانس……………… 83

شکل 36-5 بهرهی تبدیل میکسر بر حسب فرکانس و مقادیر مختلف سلفهای پیکینگ……………………. 84

شکل 37-5 نمودار IIP3 میکسر بر حسب تغییرات سلفهای پیکینگ در سه فرکانس……………………… 84

شکل 38-5 نمودارضرایب انعکاس ورودی و خروجی میکسر توزیع شدهی پیشنهادی………………………. 86

شکل 39-5 نمودار بهره میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی……………… 86

شکل 40-5 نمودار نشت پورت LO در 87…………………………………………………………………. RF

شکل 41-5 نمودار نشت پورت LO در 87………………………………………………………………….. IF

شکل 42-5 نمودار نشت پورت RF در 87…………………………………………………………………. LO

شکل 43-5 نمودار نشت پورت RF در 88………………………………………………………………….. IF

شکل 44-5 عدد نویز میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی……………….. 88

شکل 45-5 نقطه تقاطع مرتبه سوم ورودی (IIP3) میکسر طراحـی شـده بـا دو سـلول گیلبـرت و بـا تکنیـک

پیکینگ سلفی…………………………………………………………………………………………………………… 89

شکل 46-5 نقطه تقاطع مرتبه دوم ورودی (IIP2) میکسـر طراحـی شـده بـا دو سـلول گیلبـرت و بـا تکنیـک

پیکینگ سلفی…………………………………………………………………………………………………………… 89
شکل 47-5 نمودار P1dB میکسر طراحی شده با دو سلول گیلبرت و با تکنیک پیکینگ سلفی…………… 90

چکیده:

رشد سریع تکنولوژی و پیشرفت موفق تجاری مخابرات بی سیم روی زنـدگی روزمـره ی مـا تـاثیر قابل توجهی گذاشته است. امروزه بهکار بردن میکسرهای فرکانس بالا در سیستم های ارتباطاتی بیسـیم، دارای اهمیت خاصی میباشد. میکسرها یکی از اجزای اساسـی گیرنـده در مخـابرات بـیسـیم محسـوب میشوند. اجرای میکسرهای پایین آورنده1 در گیرنده ها به لحاظ وجود نویز و تضعیف در سیگنال دریافتی از اهمیت بیشتری برخوردار است.
هدف اصلی این پایان نامه، تحلیل و طراحـی میکسـر بـرای کـاربرد در بانـد فرکانسـی فـراپهن (UWB) و با استفاده از تکنولوژی CMOS می باشد. ابتدا عملکرد یک میکسر توزیع شده بررسی شده، سپس مدار میکسر پیشنهادی توزیع شده، ارایه می گردد. میکسر پیشنهادی دارای بهـره ی تبـدیل 3dB، IIP3 برابر 5/5dBm، عدد نویز 7dB، پهنـای بانـد 3 تـا 10 گیگـاهرتز و تـوان مصـرفی 52 میلـی وات میباشد. میکسر فراپهن باند توزیع شدهی پیشنهادی با استفاده از تکنولوژی CMOS 0/18μm با منبع تغذیه 1/8 ولت طراحی شده است.

مقدمه:

رشد سریع تکنولوژی و گذار از مخابرات آنالوگ به دیجیتال، ترقی سیستم های رادیویی بـه نسـل سوم و چهارم و جانشینی سیستم های سیمی با Wi-Fi و Bluetooth مشـتریان را قـادر مـی سـازد بـه گستره ی عظیمی از اطلاعات از هرجا و هر زمان دسترسی داشته باشند. مخابرات UWB برای اولین بـار در دهــهی 1960 معرفــی شــد و در ســال 2002، FCC1 رنــج فرکانســی 3.1~10.6GHz را بــرای کاربردهای UWB معرفی و توان انتقال آنرا به -41.3dBm محدود کرد، بدین معنا کـه سیسـتمهـای

UWB روی فراهم کردن: توان کم، قیمت کم و عملکرد باند وسیع در مساحت کوتـاه تمرکـز کردنـد. در مقایسه با کاربردهای باند باریک طراحی المانها در سیستمهای UWB بسیار متفاوت و مشکل است.

یکی از بلوكهای مهم در گیرندههای UWB میکسرها هستند کـه بـرای تبـادل اطلاعـات بـین تعداد زیادی کانال مشابه UWB نقش کلیدی دارند. اهمیـت عملکـرد میکسـر بـه عنـوان یـک مبـدل فرکانس، در تامین فرکانسهای کاری مناسب با پایداری و نـویز مطلـوب اسـت. میکسـر مـیبایسـتی: (1
بهرهی تبدیل بالا، که اثرات نویز در طبقات بعدی را کاهش دهـد، (2 عـددنویز کوچـک، کـه LNA را از داشتن یک بهرهی بالا راحت کند و (3 خطی بودن بالا، که رنج دینامیک گیرنده را بهبود بخشد و سطوح اینترمدولاسیون2 را کاهش دهد. هر کارایی بایستی توسط مصالحه در طراحی میکسر بهدست آید. میکسر سلول گیلبرت با برخی تغییرات در ساختار آن نتایج قابل قبـولی بـرای کـاربرد در سیسـتمهـای UWB

بهدست میدهد.

دستیابی همزمان به بهره ی تبدیل و خطی بودن بـالا کـه افـزایش یکـی باعـث کـاهش دیگـری می گردد یکی از چالش های طراحی میکسر می باشد، در کارهایی کـه تـا کنـون انجـام شـده تمرکـز روی دستیابی یکی از این دو بوده به طوریکه یا میکسری غیر فعال با خطی بودن قابل قبـول و یـا میکسـری فعال با خطی بودن کم ارائه شده است. تطبیق امپدانس در کل رنج فرکانسی 7 گیگا هرتـزی و همچنـین عدد نویز پایین از دیگر پارامترهای مهم طراحی میکسر میباشد.

9 اهداف پایان نامه

در این پایان نامه با بررسی میکسرهای فراپهن باند و مقایسهی آنها از نظر ساختار، بهرهی مدار، عدد نویز، تطبیق در ورودی و خروجی و خطی بودن، سـاختار مناسـب بـرای یـک میکسـر فـراپهن بانـد پیشنهاد شده و از لحاظ کارکرد در سیستمهای UWB بررسی گشته است.

بر خلاف کارهایی که تا کنون در این زمینه صورت گرفته که بر بهبود یکی از پارامترهای بهـره ی تبدیل یا خطی بودن میکسر تاکید شده، در اینجا سعی شـده اسـت تـا ضـمن دسـتیابی بـه هـر دو ایـن پارامترها در اندازههای قابل قبول برای گیرندهها، کل پهنای باند سیستمهای UWB پوشش داده شود.

بر این اساس در فصل اول سیستم های فراپهن باند بطور کامل معرفـی و بررسـی مـی گـردد، در فصل دوم به بررسی انواع میکسر، نحوهی عملکرد و کاربرد آنها پرداختـه شـده، در فصـل سـوم سـاختار میکسرهای توزیع شده، مشخصات و تکنیکهای بهبود کارایی آنها و در فصل چهارم اعوجـاج و نـویز در میکسر بررسی گردیدهاند. در فصل پنجم ساختار میکسر فراپهن باند طراحی شده بـه طـور مفصـل شـرح داده شده است. در فصل ششم نتیجهگیری و پیشنهادات و فصل هفتم نیز منابع و مأخذ مورد استفاده بـه تفکیک درج شدهاند.

.1  فصل اول: سیستمهای فراپهن باند (UWB)

1-1   تاریخچه تکنولوژی فراپهن باند UWB

در طول دهههای اخیر پیشرفت سریع ارتباطات باعث ایجاد تقاضا برای قطعات بهتـر و ارزانتـر و همچنین تکنولوژیهای پیشرفتهتر شده است. افزایش تقاضا برای انتقال سریع و افزایش نرخ اطلاعـات در عین مصرف کم توان تاثیرات شگرفی را بر تکنولوژی ارتباطات ایجاد کرده است. در هر دو بخش مخابرات بیسیم و سیمی این گرایش منجر به استفادهی هرچه بیشتر از مدولاسیونهایی با استفادهی بهینـهتـر از طیف فرکانسی و یا افزایش پهنای کانالها گشته است. این روشها به همـراه روشهـای مهندسـی بـرای کاهش توان، به منظور تولید تراشه های ارزان و با مصرف توان کم در صنعت استفاده میشود.

افزایش و گسترش استانداردها نه تنها باعث شده که سیستمها با طیفهای شلوغتری از لحاظ فرکانسی روبرو باشند بلکه باعث شده است تا سیستمها به سوی چند استاندارده بودن سوق داده شده و قابلیت انطباق با استانداردهای مختلف را داشته باشند. در حقیقت این پیشرفت تکنولوزی منجر به طراحی و تولید دستگاههایی شده است که قابلیت کارکرد در باندهای وسیعتری را داشته باشند، مانند تکنولوژی فرا پهن باند . (UWB)

تکنولوژی فراپهن باند (UWB) در دهه های اخیر بسیار مورد توجه قرار گرفتـه اسـت. مـیتـوان گفت که شروع استفاده از دانش UWB مربوط به انتهای قرن نوزدهم می باشد. اولین سیستم بی سیم که توسط گاگلیرمو مارکونی1 در سال 1987 نمایش داده شد، خصوصیات رادیوی فـراپهن بانـد را دارد. رادیـو ساخته شده توسط مارکونی از پهنای باند وسیعی برای انتقال اطلاعات بهره می گرفت. اولین فرستنده های جرقه ای مارکونی فضای زیادی از طیف (از فرکانس هـای بسـیار پـایین تـا فرکـانس هـای بـالا) را اشـغال می کردند. همچنین این سیستم ها به طور غیراتوماتیک از پردازش زمان اسـتفاده مـی نمودنـد. چـون کـد مورس توسط اپراتورهای انسانی ارسال و دریافت می شد. پس از آن مفهوم UWB مجدداً در دهـه 1960

برای ساخت رادارهای ایمن در برابر تداخل با مصرف توان کم مورد توجه قرار گرفت .[1]

در اوایل پیدایش ، UWB به نامهای Carrier free ، باند پایه یا ضربه رایج بود که در حقیقت متضمن این نکته بود که استراتژی تولید سیگنال نتیجه یک پالس با Rise time بسیار سریع و یـا یـک ضربه

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...