کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


آخرین مطالب



 



 

پایان نامه جهت اخذ درجه کارشناسی ارشدM .Sc) )

رشته: جغرافیای طبیعی – گرایش آب و هواشناسی سینوپتیک

عنوان:

تحلیل روابط  همدیدی پرفشار سیبری و دماهای بحرانی دوره سرد سال در ایران مرکزی

استاد راهنما:

غلامرضا براتی

استادان مشاور:

محمود احمدی

ابراهیم میرزایی

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب:

چکیده فارسی……………………………….. n

تشکر…………………………………n

تقدیم………………………………… n

فهرست مطالب…………………………..الف

فهرست شکل ها……………………………….. ح

فهرست جدول ها……………………………….. د

1-1. بیان مسأله………………………………… 2

n توده هوای عموما گرم وخشک ناشی از پرفشاره جنب حاره……………… 2

nتوده های هوای سرد و خشک ناشی از پرفشار سیبری………………..  2

n توده های هوای اقیانوسی مدیترانه ای ناشی از ورود بادهای غربی……..2

n توده هوای نسبتا گرم و مرطوب ناشی از ورود زبانه های کم فشار سودانی…..3

1-1-1. اهمیت سرماهای بحرانی از نظر محققان………………………… 3

n به لحاظ مفهومی…………………………………. 3

n به لحاظ کمی…………………………………. 3

n به لحاظ پیامدها و زیان ها……………………………….. 4

1-1-2. اهداف تحقیق…………………………………. 5

1-2. پیشینه تحقیق…………………………………. 5

n تحقیقات مربوط به شرایط و چگونگی تشکیل پرفشار سیبری ……….. 6

n تحقیقات مربوط به روابط پویشی پرفشار سیبری با دیگر سامانه های دور در قالب پیوند از دور….6

n تحقیقات مربوط به قلمرو گسترش زبانه های هوای سرد پرفشار سیبری………7

n تحقیقات مربوط به شرایط زمانی و مکانی پرفشار سیبری در سرزمین ایران……8

2-1. بنیادهای پژوهش…………………………………… 10

2-1-1.  هوا ………………………………..10

2-1-2. آب وهوا……………………………….. 11

2-1-3. دما………………………………..11

2-1-4. تغییرات دمایی…………………………………. 11

2-1-5. آستانه………………………………… 12

2-1-6.  حداکثر دمای روزانه………………………………… 12

2-1-7.  حداقل دمای روزانه………………………………… 12

2-1-8.  روز سرد………………………………… 12

2-1-9. دمای بحرانی…………………………………. 12

2-1-10. وزش هوا……………………………….. 12

2-1-11. فرارفت هوای سرد………………………………… 12

2-1-12. فشار……………………………….. 13

2-1-13.  شیب تغییرات فشار………………………………..13

2-1-14.  توده های هوا ………………………………..13

2-1-15.  مفهوم همدید………………………………… 13

2-1-16.  نقشه های هوا……………………………….. 13

2-1-17. ایستگاه همدید………………………………… 14

2-1-18. آب و هواشناسی همدید………………………………… 14

2-1-19. ناوه (زبانه کم فشار) ………………………………..14

2-1-20. پشته (زبانه پرفشار)……………………………….. 15

2-1-21. پرفشارها (آنتی سیکلون)……………………………….. 15

2-1-22. پرفشارهای گرمایی………………………………… 15

2-1-23. پرفشار های پویشی…………………………………. 16

2-1-24. نقشه سطح متوسط دریا……………………………….. 16

2-1-25. نقشه های ترازهای بالای جو………………………………… 16

2-1-26. نقشه های هم ارتفاع ژئوپتانسیل………………………….. 16

2-1-27. پرفشار سیبری…………………………………. 17

2-1-28. عامل اصلی تشکیل پرفشار سیبری……………………….. 18

2-1-29. گسترش پرفشار سیبری روی ایران……………………….. 19

2-1-30. پرفشار جنب حاره……………………………….. 19

2-1-31. بادهای غربی…………………………………. 19

2-1-32. کم فشار سودان…………………………………. 19

2-1-33. واچرخند عربستان…………………………………. 20

2-2. سرزمین پژوهش…………………………………… 20

2-2-1. سیمای طبیعی ایران مرکزی…………………………………. 20

2-2-2. پهنه های آبی اثر گذار بر ایران مرکزی………………………. 22

< دریای مدیترانه………………………………… 22

<دریای سرخ و خلیج عدن…………………………………. 22

<دریای سیاه ………………………………..22

2-2-3. پراکنش دما ………………………………..23

2-2-4. میانگین دمای ماهانه………………………………… 24

2-2-5. دمای بیشینه مطلق ماهانه………………………………..25

2-2-6. دمای کمینه مطلق ماهانه………………………………… 26

2-2-7. بارش سالانه……………………………….. 27

2-2-8. میانگین ماهانه بارش………………………………….. 28

2-2-9. پراکنش فشار……………………………….. 30

2-2-10. میانگین ماهانه سمت و سرعت باد غالب در هشت ایستگاه نمونه……32

3-1.  پرسش‌های پژوهش…………………………………… 36

3-2. فرضیات پژوهش………………………………….. 36

3-3. گزینش سرزمین پژوهش و ایستگاه های داده سنجی  ………..36

3-4. منابع داده ها……………………………….. 38

3-5. تعیین ویژگی های عمومی آب‌وهوایی سرزمین پژوهش………. 38

3-6. مراحل شناسایی و استخراج موج های سرما………………… 39

3-7. معیار تعیین موج های سرما……………………………….. 42

3-8. معیار تعیین موج سرمای بحرانی…………………………………. 42

3-9. معیار تعیین روز اوج سرمای بحرانی…………………………………. 42

3-10. مراحل آزمون فرضیه نخست تحقیق………………………………. 43

3-10-1. تهیه داده های ترازی…………………………………. 43

3-10-2. تبدیل داده های فشرده به متن…………………………………. 43

3-9-3. تعیین محدوده طراحی الگوهای همدید…………………………… 43

3-10-4. تبدیل داده های رقومی به نقشه………………………………… 44

3-10-5. ترسیم نقشه های ارتفاعی………………………………… 45

3-10-6. تعیین بیرونی ترین پربند بسته برای هر سرما……………… 46

3-10-7. تعیین پربند پشتیبان پرارتفاع سیبری………………………. 47

3-11. مراحل آزمون فرضیه دوم………………………………… 47

3-11-1. رسم نقشه های بردار باد………………………………… 47

این مطلب را هم بخوانید :

3-11-2. رسم نقشه های خطوط جریان باد……………………….. 48

3-11-3. رسم نقشه های دما ………………………………..48

3-11-4. کمی کردن نقشه های بردار باد………………………………… 48

3-11-5. اسکریپت نویسی میانگین بردارهای باد………………………. 48

3-11-6. اسکریپت نویسی تعیین جهت و سمت غالب بردارهای باد…… 49

3-11-7.  فراخوانی اسکریپت dat.gs به محیط  GrADS………………..

3-11-8. کارتوگرافی و تکنیک رسم نقشه ها …………………………52

4-1. تحلیل آماری 47 موج سرماهای بحرانی………………………………..  53

4-1-1. سه ویژگی سرماهای بحرانی…………………………………. 55

<دوام………………………………… 55

………………………………..

<گسترش مکانی…………………………………. 56

4-1-2. نتایج آماری سرماهای بحرانی ایران مرکزی……………… 57

4-2. نتایج همدید سرماهای بحرانی ایران مرکزی………………….. 58

4-2-1. نقش پرفشار سیبری در سرماهای بحرانی ایران مرکزی……..58

<تراز دریا ………………………………..65

<تراز 1000 ه.پ………………………………….. 67

<ترازهای 750 و 500 ه.پ………………………………….. 69

<تحلیل موقعیت پربند پشتیبان…………………………………. 73

دانلود پایان نامه

 

<تحلیل الگوهای  همدید- تراز 1000 ه.پ………………………………….. 74

<تحلیل الگوهای همدید- تراز 750 ه.پ………………………………….. 75

<تحلیل الگوهای همدید- تراز 500 ه.پ………………………………….. 76

4-2-2. نقش فرارفت های شرقی در سرماهای بحرانی ایران مرکزی…………77

<سمت باد، دما و خطوط جریان در ترازهای بالا………………………………… 77

<تحلیل سرعت و سمت میانگین باد………………………………..87

تحلیل الگوهای بردار باد در تراز 1000 ه.پ………………………………….. 88

5-1. آزمون فرض…………………………………… 90

5-2. نتیجه گیری…………………………………. 91

5-3. پیشنهادها……………………………….. 92

5-4. تنگناهای تحقیق…………………………………. 92

<سرچشمه ها……………………………….. 93

<چکیده لاتین…………………………………. 97

چکیده:

خسارات ناشی از دما های سرد بحرانی بویژه در اکوسیستم های طبیعی و مناطق پرجمعیت شهری در حال افزایش است. ایران مرکزی سرزمینی خشک و مستعد رخداد سرما بویژه طی زمستان است و فاقد منابع تعدیل کننده تنش های دما مانند منابع آب و پوشش گیاهی انبوه است. در تحقیق حاضر برای تعیین امواج سرمای ایران مرکزی، داده های دمای بیشینه روزانه مربوط به مجموع هشت شهر شامل شاهرود، تهران، سمنان، کاشان، اصفهان، یزد، کرمان و بم تهیه و دماهای صفر و زیرصفر آنها به عنوان امواج سرما استخراج شد. بر این اساس، تعداد 47 موج سرما در بازه آماری (1980-2012) شناسایی شد و در دومین مرحله بر پایه 2 معیار زمانی و مکانی یعنی به ترتیب دو روز دوام و درگیری دو ایستگاه و بیشتر، 17 مورد سرمای بحرانی تعیین شد. گشایش پرونده های داده های ترازی هوا تهیه شده از بایگانی NCEP/NCAR، تبدیل آنها به پوشه های متنی طی تاریخ های سرماهای بحرانی و رسم نقشه های هوای روزانه و ترکیبی با استفاده از نرم افزار Surfer سه مرحله از کار بود که به طراحی الگوهای همدید برای تعیین تراز و سمت غالب فرارفت هوای سرد سیبری انجامید. نتایج نشان داد که فرارفت سرما بسوی ایران مرکزی طی 70 درصد مواقع در پایین ترین ترازها (ترازهای دریا و 1000 هکتوپاسکال) و در قالب زبانه های پرفشار سیبری رخ داده است و تنها در 12 درصد اثر پرفشار ارتفاعی تبت و 17 درصد اثر پرفشارهای سرد مهاجر (غربی) آشکار شد.

تحلیل الگوهای های بردار باد و دما در تراز 1000 ه. پ برای  آزمون سمت فرارفت هوای سرد طی روزهای رخداد سرماهای بحرانی نشان داد که بردارهای باد در 70 درصد مواقع (12 مورد از 17 مورد)، از سمت جنوب شرق به عنوان دنباله بادهای شرقی از روی افغانستان و پاکستان و گاهی هم از سمت شمال شرق و شرق بر گستره ایران مرکزی راه یافته اند.

فصل اول: سرآغاز

تغییر در بسامد بلایای آب و هوایی مانند موج های سرما یکی از مهمترین جنبه های تغییر آب و هوا است (کنکال و همکاران؛ 1999). همه ساله افراد زیادی با گسترش و وقوع موج های گرم و یا بوران های سرمایی هلاک می شوند (علیجانی،1390). در این میان دماهای بسیار سرد به عنوان خطر یا بحران برای انسان تعریف شده اند. اساسا عنصر دما از دیرباز مورد توجه آب وهواشناسان بوده (عساکره؛ 1388)، تغییرات کوتاه مدت و درازمدت آن می­تواند ساختار آب و هوای هر محل را دگرگون سازد.

بر اساس گزارش هیأت بین الدول آب وهوا  (IPPC. 2001)دمای سطح کره زمین در فاصله زمانی 1861-2001 میلادی حدود 0.6 درجه سانتی گراد افزایش یافته است. این درحالی است که رفتار فراسنج دمای حداقل و حداکثر با یکدیگر متفاوت بوده، دمای حداقل به طور آشکاری نرخ افزایشی داشته است. با وجود افزایش دمای حداکثر، نرخ آن از نرخ دمای حداقل کمتر بوده است (کارل و همکاران،1993).

از این رو بنا به قول شعبانی و همکاران (1392: 896)، مدلسازی متغیرهای حدی دمای هوا و پیش بینی دماهای حداکثر و حداقل به عنوان یکی از مهمترین پارامترهای آب وهوای با توجه به تغییرات آب وهوایی، گرمایش جهانی و خشکسالی­ها، قطعاً فرصت بیشتری را جهت برنامه ریزی و ارائه تمهیدات لازم به خصوص در آب و هواهای خشک و نیمه خشک در اختیار برنامه ریزان قرار می دهد.

1-1- بیان مسأله

ایران به دلیل گستردگی زیاد در طول و عرض جغرافیایی، پیچیدگی در پیکربندی ناهمواری ها و یورش توده های هوا با خاستگاه های گوناگون، از نظر دمایی شرایط ویژه ای دارد. تکرار توده های هوایی که به وسیله سامانه های چرخندی و واچرخندی و یا گسترش زبانه های آنها به ایران می رسند و شرایط رطوبتی و دمایی هوای روزمره را تعیین می کنند؛ در درازمدت، شرایط آب و هوایی ایران را به وجود می آورد (علیجانی،1383: 37).

سرزمین ما به دلیل  شرایط جغرافیایی خاص، یعنی موقعیت آن در رابطه با گردش عمومی جو و قرار گرفتن آن در عرضهای جغرافیایی میانه، در فصول مختلف سال تحت تاثیر آنتی سیکلونهایی با منشاهای مختلف و خصوصیات فیزیکی گوناگون قرار می گیرد، از جمله این آنتی سیکلون ها، پرفشار سیبری است که مهم ترین مرکز کنش جوی اوراسیا طی زمستان است و اثر محسوسی بر آب وهوای ایران دارد (لشکری 1375: 4).

از جمله سامانه های موثر بر توده هوای وارد شونده به سرزمین ایران می توان به موارد زیر اشاره کرد؛

توده هوای عموما گرم و خشک ناشی از پرفشاره جنب حاره: پرفشاره جنب حاره، سامانه پویشی (دینامیکی) بزرگی در مقیاس سیاره ای است که کانونی روی اقیانوس اتلس شمالی دارد. در دوره گرم سال زبانه ای از پرفشار جنب حاره روی ایران است. قلمرو این زبانه از تراز 700 تا 1000 ه.پ گسترش دارد و سبب حاکمیت هوایی گرم و خشک بر بخش بزرگی از ایران (شبانکار و جلبیان، 1389: ص 48)، بویژه در سرزمین های دور از ساحل می شود.  با حرکت پرفشارجنب حاره و رودباد همراه با آن به عرض های پایین تر، از ماه دسامبر و ورود بادهای غربی به ایران در دوره سرد سال (امام هادی، 1383: 36) می توان شاهد ورود توده های هوایی دیگری بود.

n توده های هوای سرد و خشک ناشی از پرفشار سیبری: پرفشار سیبری از میانه ی مهر تا میانه ی فروردین بر آسیا حاکم است. این سامانه نقش دمایی مهمی در ایران بازی می کند و چنانکه پیش از این براتی و علیجانی (1378: 55)، تحقیق کرده اند، طی فصل بهار زبانه های سرمای آن از شمال شمال شرق و گاهی شمال غرب به ایران نفوذ می کنند. مسعودیان (1386: 22) نیز به گسترش این هوای بسیار سرد و خشک بر بخش هایی از کشور اشاره دارد.

n توده های هوای اقیانوسی مدیترانه ای ناشی از ورود بادهای غربی: دریای مدیترانه در مسیر بادهای غربی قرار دارد و اثرات آن از طریق این باد ها به ایران گسترش می یابد. در دورۀ سرد سال بر اثر استقرار فرود بلند مدیترانه، سامانه های غربی فشار هوا اعم از موج های سطح بالا و چرخندهای روی زمین به طرف ایران می آیند. از این رو رطوبت بارندگی ها در دورۀ سرد سال به وسیلۀ سامانه های مهاجر دریای مدیترانه تأمین می شود (علیجانی؛1391).

n  توده هوای نسبتا گرم و مرطوب ناشی از ورود زبانه های کم فشار سودانی: کم فشار سودانی که در شمال آفریقا تشکیل می شود و در فصل تابستان به صورت یک کم فشار حرارتی عمل می کند و در زمستان رفتار پویشی دارد .هر گاه کم فشار سودانی و مدیترانه ای با هم مرتبط شوند، ناوۀ عمیق در شرق مدیترانه به وجود  می آید و موجب ورود توده های نسبتاً گرم و مرطوب و بارش های سنگین در اغلب نقاط ایران می شود (جوانمرد و همکاران،1382).

1-1-1- اهمیت سرماهای بحرانی از نظر محققان

دما از مهمترین عناصر آب وهوایی است و تغییرات ناگهانی آن به ویژه افت دما به مقادیر زیر صفر درجه، منشأ بسیاری از تحولات فیزیکی، شیمیایی و زیست محیطی است. به همین دلیل، بررسی روند دما در مقیاس های مختلف زمانی و مکانی مورد توجه محققان بوده، بخش بزرگی از ادبیات آب وهوا شناسی را به خود اختصاص داده است. در این مجال به بیان اهمیت موضوع دماهای بحرانی سرد از سه جهت می پردازیم:

– به لحاظ مفهومی:

موضوعات: بدون موضوع  لینک ثابت
[چهارشنبه 1399-07-02] [ 12:14:00 ق.ظ ]




1-3اسانس گیری اندام های هوایی گیاه رزماری از طریق تقطیر با آب (کلونجر): 47

3-2-آماده سازی اندامهای گیاهی برای تقطیر : 48

3-3- معایب روش تقطیر با آب : 48

3-4- تغییرات شیمیایی اسانس ها در جریان تقطیر: 49

3-5- روش کار اسانس گیری با کلونجر: 49

3-6- اسانس گیری اندام هوایی گیاه رزماری با دستگاه کلونجر : 50

3-7- اندازه گیری مقدار سرب موجود در گیاه رزماری : 50

فصل چهارم. 51

4-1- ترکیبات.. 52

2-4- چگونگی انتخاب مناطق برای جمع اوری گیاه رزماری و شرایط جغرافیایی : 54

4-3- نتایج طیفهای GC-MS در اردیبهشت ماه ( بهار) : 56

-4-4اندازه گیری و نتایج مقدار سرب موجود در گیاه رزماری : 76

4-5- بحث و نتیجه گیری : 77

مراجع: 85

فهرست جداول و نمودارها

عنوان                                 صفحه

4-3-1- جدول نتایج GC-MS  : 56

4-3-2-نمودار درصد نتایج GC-MS: 62

 

5-1-نمایش تصاویر GC-MS : 80

 

چکیده :

یکی از گیاهان دارویی با ارزش، گیاه رزماری با نام علمی Rosmarinus officinalis می باشد که با طبیعت گرم و خشک، از خانواده نعناعیان، که پرورش گیاه رزماری در بیشتر نواحی ایران معمول و دارای خواص با ارزش متعددی از جمله خواص انتی اکسیدانی،ضدباکتری و ضد درد و دیابت می باشد.در این تحقیق به منظور بررسی اثرات امواج مایکروویو براسانس و ترکیب شیمیایی موجود در گونه گیاه رزماری از برگ گونه در یک مرحله از پنج نقطه مختلف(دو نمونه در محدوده فشار قوی برق و یک نمونه در محدوده امواج موبایل و دو نمونه دیگر خارج از محدوده فشار قوی برق و موبایل)جمع اوری و خشک شد.سپس از نمونه توسط دستگاه کلونجر(تقطیر با بخار اب)اسانس گیری به عمل امد. سپس جهت بررسی ترکیب شیمیایی اسانس ها از دستگاه کروماتوگرافی متصل به طیف سنج جرمی(GC/MS)استفاده شد.نتایج نشان داد که ترکیبات عمده در طرح بیشتر شامل آلفاپینن(16HC10)، کامفن، بتاپینن،اکتانون (C8H16O)، بتامیرسن، 1و8 سینئول (C10H18O)می باشد. بعضی از این ترکیبات بسته به شرایط جغرافیایی و محیطی از جمله اب و هوا، خاک، میزان ابدهی، چند ساله بودن گیاه، کوددهی و … و همچنین در محدود اثر این امواج یا بدون اثر این امواج میزان درصد این ترکیبات کم و زیاد می شود یا در بعضی از این مکانها بسته به شرایط گفته شده و تاثیر امواج فشار قوی برق و امواجBTS و یا خارج از محدوده این امواج این ترکیبات می توانند بصورت درصدهای متفاوت در این مکان ها ظاهر یا اصلا ظاهر نشوند.

فصل اول

این مطلب را هم بخوانید :

 

مقدمه

1-1مقدمه :

محققان تأكید دارند كه قرار گرفتن در معرض تشعشعات امواج، اثرات نامحسوسی بر سلامتی انسان دارد و این اثرات به طول موج اشعه بستگی دارد .شواهد نشان می دهد افرادی كه بیش از سایرین در معرض امواج الكترومغناطیسی هستند، معمولا در مراحل اولیه خواب فعالیت های مغزی بیش تری نسبت به سایرین داشته و احسا س آشفتگی دارند. بنابراین هنگامی كه ما از راحتی و آسودگی استفاده از لوازم الكتریكی  و تلفن های همراه لذت می بریم و كارهای روزمره خود را با آن ها انجام می دهیم به طور همزمان در معرض اثرات منفی امواج الكترومغناطیسی قرار داریم، اما متأسفانه همه ما سعی داریم این واقعیت كه استفاده مداوم و طولانی مدت از لوازم الكتریكی آسیب هایی بر بدن ما وارد میکند را نادیده بگیریم و به راحتی از كنار آن بگذریم . گزارش های علمی حاكی از آن است كه تلفن های همراه یكی از منابع اصلی تولید امواج الكترومغناطیسی هستند و دانشمندان بر این عقیده اند كه استفاده از این وسیله ارتباطی می تواند اثرات مخربی را بر سلامت انسان داشته باشد. امروزه پیشرفت تكنولوژی و به دنبال آن گشایش افق های تازه بر روی انسان قرن 21 از یكسو و بهبود وضعیت اقتصادی مردم در نقاط مختلف جهان از سوی دیگر سبب شده تا اقشار مختلف مردم به منظور راحتی كار و افزایش رفاه خود از ابزارهای جدیدی استفاده كنند . به نظر می رسد كه استفاده از این ابزارها علاوه بر فواید آن، زیان هایی را برای كاربران آن ها به همراه دارد که از جمله آن ها می توان به انتشار امواج الكترومغناطیسی از انواع دستگاه های تلفن همراه و وسایل برقی نظیر مایكروویو، سشوار، سیستمهای بی سیم، موتور ماشین ها، سیم های فشار قوی، انواع كامپیوترها و بسیاری از لوازم برقی موجود در اطراف ما اشاره كرد كه همواره به عنوان تهدیدی جدی برای سلامتی انسان ها محسوب می شوند و ما را همواره در معرض ابتلا به ناهنجاری هایی قرار می دهد. تحقیقات دانشمندان روی پدیده های الكتریكی و مغناطیسی و وابستگی آن ها نشان داد كه الكتریسیته و مغناطیس و نور از هم جدا نبوده و از یك جنس هستند و نور بخش كوچكی از آن است و فقط طول موج امواج انهاست كه این پدیده ها را از هم جدا می كند. دو جسم كه دارای بار الكتریكی باشند بر یكدیگر نیرو وارد می كنند. كولن تحت تأثیر قانون جهانی گرانش نیوتن مقدار نیرویی را كه اجسام باردار بر یكدیگر وارد می كنند را به طور ریاضی بیان كرد كه طبق آن، این مقدار با حاصلضرب بارها متناسب و با مجذور فاصله نسبت عكس دارد.

F=kqQ/r^ .

تعداد صفحه : 98

قیمت : 14700تومان

 

موضوعات: بدون موضوع  لینک ثابت
 [ 12:14:00 ق.ظ ]




جدول 3-9- ضرایب ردلیچ کیستر و انحراف استاندارد  برای سیستم دوتایی سولفولان + بروموبنزن        43

جدول 3-10- حجم مولار اضافی برای سیستم دوتایی سولفولان + نیتروبنزن در دماهای مختلف 44

جدول 3-11- ضرایب ردلیچ کیستر و انحراف استاندارد برای سیستم دوتایی سولفولان + نیتروبنزن                44

جدول 3-12- مقادیر حجم مولار اضافی،انحراف استاندارد و پارامتر برهمکنش برای سیستم­های دوتایی توسط تئوری پریگوگن-فلوری- پترسون در دماهای مختلف….. 45

جدول 3-13- مقادیر ضریب انبساط دمایی اضافی برای سیستم دوتایی سولفولان + کلروبنزن در دماهای مختلف       46

جدول 3-14- ضرایب ردلیچ کیستر و انحراف استاندارد ضریب انبساط دمایی اضافی برای سیستم دوتایی سولفولان + کلروبنزن… 46

جدول 3-15- مقادیر ضرایب انبساط دمایی اضافی برای سیستم دوتایی سولفولان + بروموبنزن در دماهای مختلف       47

جدول 3-16- ضرایب ردلیچ کیستر و انحراف استاندارد ضریب انبساط دمایی اضافی برای سیستم دوتایی سولفولان +   بروموبنزن… 47

جدول 3-17- مقادیر ضریب انبساط دمایی اضافی برای سیستم دوتایی سولفولان + نیترووبنزن در دماهای مختلف     …………………………………………………………………………………………………………………………………………………………………… 48

جدول 3-18- ضرایب ردلیچ کیستر و انحراف استاندارد ضریب انبساط دمایی اضافی برای سیستم دوتایی سولفولان +  + نیتروبنزن… 48

جدول 3-19- شماره­های کاپیلار جهت اندازه گیری گرانروی مایعات مختلف… … 50

جدول 3-20- گرانروی ترکیبات خالص در دمای 298.15 کلوین با توجه به مراجع ذکر شده 50

جدول 3-21- گرانروی مطلق و انحراف گرانروی برای سیستم دوتایی سولفولان + کلروبنزن.. .. 52

جدول 3-22- ضرایب ردلیچ کیستر و انحراف استاندارد برای سیستم دوتایی سولفولان + کلروبنزن.. .. 52

جدول 3-23- گرانروی مطلق و انحراف گرانروی برای سیستم دوتایی سولفولان + بروموبنزن.. .. 53

جدول 3-24- ضرایب ردلیچ کیستر و انحراف استاندارد برای سیستم دوتایی سولفولان + بروموبنزن    53

جدول 3-25- گرانروی مطلق و انحراف گرانروی برای سیستم دوتایی سولفولان + نیترووبنزن.. .. 54

جدول 3-26- ضرایب ردلیچ کیستر و انحراف استاندارد برای سیستم دوتایی سولفولان + نیترووبنزن 54

جدول 3-27- مقادیر  برای سیستم دوتایی سولفولان + کلروبنزن در دماهای مختلف… … 56

جدول 3-28- ضرایب ردلیچ-کیستر و انحراف استاندارد برای سیستم دوتایی سولفولان + کلروبنزن      56

جدول 3-29-  مقادیر  برای سیستم دوتایی سولفولان + بروموبنزن در دماهای مختلف… … 57

جدول 3-30-  ضرایب ردلیچ-کیستر و انحراف استاندارد برای سیستم دوتایی سولفولان + بروموبنزن 57

جدول 3-31-  مقادیر  برای سیستم دوتایی سولفولان + نیتروبنزن در دماهای مختلف… … 58

جدول 3-32-  ضرایب ردلیچ-کیستر و انحراف استاندارد  برای سیستم دوتایی سولفولان + نیترووبنزن    58

جدول 3-33- حجم مولی ترکیبات خالص در سه دما 60

جدول 3-34- حجم مولی جزیی  و  برای سیستم دوتایی سولفولان + کلروبنزن در دماهای مختلف      61

این مطلب را هم بخوانید :

جدول 3-35- حجم مولی جزیی  و  برای سیستم دوتایی سولفولان + بروموبنزن در دماهای        مختلف      62

جدول 3-36- حجم مولی جزیی  و  برای سیستم دوتایی سولفولان + نیتروبنزن در دماهای مختلف      63

جدول 3-37- حجم مولی جزیی اضافی  و  برای سیستم دوتایی سولفولان + کلروبنزن در دماهای مختلف     64

جدول 3-38- حجم مولی جزیی اضافی  و  برای سیستم دوتایی سولفولان+ بروموبنزن در دماهای مختلف      65

جدول 3-39- حجم مولی جزیی اضافی  و  برای سیستم دوتایی سولفولان + نیتروبنزن در دماهای مختلف      66

عنوان                                                      فهرست اشکال                                                  صفحه

شکل-2-1- سیالی که بین دوصفحه جریان دارد………………………………………………………………………………….. 7

شکل-2-2- گرانرومتر استوالد……………………………………………………………………………………………………………………. 9

شکل-2-3- دستگاه اندازه گیری گرانروی با روش استوک……………………………………………………………………… 10

شکل-2-4- ساختار گرانرومترشات گراته………………………………………………………………………………………………….. 11

شکل-2-5- پیکنومتر پر شده با مایع رنگی……………………………………………………………………………………………… 13

شکل-2-6- تصویر لوله  Uشکل………………………………………………………………………………………………………………… 15

شکل-2-7- ارتعاش نوسانگر………………………………………………………………………………………………………………………. 16

 

شکل-2-8- تغییرات حجم محلول بر اثر افزایش یک مول حل­شونده…………………………………………………… 32

شکل-3-1- دستگاه چگالی سنج آنتون پار………………………………………………………………………………………………. 35

نمودار 3-2- نمودار تغییرات چگالی سیستم دوتایی  سولفولان + کلروبنزن در دماهای مختلف…………. 38

نمودار 3-3- تغییرات چگالی سیستم دوتایی سولفولان+ بروموبنزن در دماهای مختلف 39

نمودار 3-4- تغییرات چگالی سیستم دوتایی سولفولان + نیترو بنزن در دماهای مختلف….. 40

نمودار4-1- تغییرات حجم مولار اضافی برای سیستم دوتایی  سولفولان + کلروبنزن در دماهای مختلف    67

نمودار4-2- تغییرات حجم مولار اضافی برای سیستم دوتایی سولفولان+ بروموبنزن در دماهای مختلف         68

نمودار4-3- تغییرات حجم مولار اضافی برای سیستم دوتایی سولفولان + نیترو بنزن در دماهای مختلف    68

نمودار4-5- تغییرات حجم مولار اضافی برای سیستم دوتایی  سولفولان با حل­شونده ها در 15/298 کلوین70

نمودار4-6- تغییرات گرانروی برای سیستم دوتایی  سولفولان + کلروبنزن در دماهای مختلف….. 72

نمودار4-7- تغییرات گرانروی برای سیستم دوتایی سولفولان+ بروموبنزن در دماهای مختلف….. 72

نمودار4-8- تغییرات گرانروی برای سیستم دوتایی سولفولان + نیترو بنزن در دماهای مختلف….. 73

نمودار4-9- تغییرات انحراف گرانروی برای سیستم دوتایی  سولفولان + کلروبنزن در دماهای مختلف   73

نمودار4-10- تغییرات انحراف گرانروی برای سیستم دوتایی سولفولان+ بروموبنزن در دماهای مختلف 74

نمودار4-11- تغییرات انحراف گرانروی برای سیستم دوتایی سولفولان + نیترو بنزن در دماهای مختلف    74

نمودار4-12- تغییرات  برای سیستم دوتایی سولفولان + کلروبنزن در دماهای مختلف….. 76

نمودار4-13- تغییرات  برای سیستم دوتایی سولفولان+ بروموبنزن در دماهای مختلف….. 76

نمودار4-14- تغییرات  برای سیستم دوتایی سولفولان + نیترو بنزن در دماهای مختلف….. 77

نمودار4-15- تغییرات ضرایب انبساط دمایی و ضریب انبساط دمایی اضافی برای سیستم دوتایی سولفولان + کلروبنزن در دماهای مختلف….. 78

نمودار 4-16- تغییرات ضرایب انبساط دمایی و ضریب انبساط دمایی اضافی برای سیستم دوتایی سولفولان+ بروموبنزن در دماهای مختلف….. 79

نمودار 4-17- تغییرات ضرایب انبساط دمایی و ضریب انبساط دمایی اضافی برای سیستم دوتایی سولفولان + نیترو بنزن در دماهای مختلف….. 79

نمودار 4-18-  تغییرات حجم مولی جزئی سولفولان برای سیستم دوتایی  سولفولان + کلروبنزن در دماهای مختلف       81

نمودار 4-19- تغییرات حجم مولی جزئی کلروبنزن برای سیستم دوتایی سولفولان + کلروبنزن در دماهای مختلف       82

نمودار 4-20-  تغییرات حجم مولی جزئی سولفولان برای سیستم دوتایی سولفولان + بروموبنزن در دماهای مختلف       83

نمودار 4-21- تغییرات حجم مولی جزئی بروموبنزن برای سیستم دوتایی سولفولان + بروموبنزن در دماهای مختلف       83

نمودار 4-22- تغییرات حجم مولی جزئی سولفولان برای سیستم دوتایی سولفولان + نیتروبنزن در دماهای مختلف       84

نمودار 4-23- تغییرات حجم مولی جزئی نیتروبنزن برای سیستم دوتایی  سولفولان + نیتروبنزن در دماهای مختلف  ……………………………………………………………………………………………………………………………………………………………. 84

نمودار 4-24- تغییرات حجم مولی جزئی اضافی جزء اول برای سیستم­های دوتایی در 15/298 درجه کلوین.. 85

نمودار 4-25- تغییرات حجم مولی جزئی اضافی جزء دوم برای سیستم­های دوتایی در 15/298 درجه کلوین.. 85

 

چکیده

چگالی و گرانروی مخلوط های دوتایی سولفولان با کلرو بنزن، بروموبنزن و نیتروبنزن در محدوده کسر مولی (0-1) در دماهای 15/298، 15/303و 15/308 کلوین و در فشار جو اندازه گیری شد

از روی اطلاعات تجربی چگالی و گرانروی حجم مولار اضافی، ضریب انبساط دمایی اضافی، انحراف گرانروی و مقادیر انرژی آزاد گیبس فعال­سازی اضافی و همچنین مقادیر حجم های مولی جزئی نیز محاسبه گردید.

کمیت های ترمودینامیکی اضافی نام برده شده در بالا در معادله ردلیچ-کیستر قرار داده شد تا پارامترهای برهمکنش­های دوتایی تخمین زده شود. از نتایج تجربی حجم مولار اضافی توسط نظریه پریگوگن-فلوری-پترسون مقادیر حجم مولار اضافی پیش بینی و بهم ارتباط داده شدند

نتایج نشان داد که مقادیر حجم مولار اضافی برای همه محلول­های دوتایی منفی می باشد همچنین مقادیر گرانروی و انرژی آزاد گیبس فعال­سازی اضافی منفی بدست آمد . میزان و نوع برهمکنش­های بین حلال و حل شونده های مخلوط­های دوتایی نیز تفسیر گردید

واژه های کلیدی

مخلوط­های دوتایی، معادله ردلیچ -کیستر، خواص اضافی، نظریه پریگوگن-فلوری-پترسون، ضریب انبساط دمایی اضافی

فصل اول: مقدمه

مخلوط­های دوتایی

موضوعات: بدون موضوع  لینک ثابت
 [ 12:13:00 ق.ظ ]




شکل ‏2‑1 مقایسه­ی منحنی­های گرما وزن سنجی برای پیرولیز حرارتی و کاتالیستی پلی پروپیلن با سرعت حرارت دهی K/min10،تحت گاز نیتروژن 17
شکل ‏2‑2 منحنی های کاهش وزن تخریب پلی پروپیلن با کاتالیست FCC در سرعت های حرارت دهی مختلف 18
شکل ‏2‑3 منحنی های کاهش وزن تخریب پلی پروپیلن با کاتالیست FCC و کاتالیست های بازیابی شده 19
شکل ‏2‑4 منحنی های کاهش وزن TG در تخریب پلی پروپیلن با کاتالیست FCC و کاتالیست های کک­دار شده 20
شکل ‏2‑5  منحنی گرما وزن سنجی  در تخریب الاستومرNR/SBR با سرعت حرارت دهی 40 درجه سانتی گراد بر دقیقه 21
شکل ‏2‑6 درصد محصول مایع حاصل از پیرولیز حرارتی و کاتالیستی پلی اتیلن سنگین با کاتالیست FCC (خط ممتد:کاتالیستی، خط­چین: حرارتی و در دمای مربع: 400 درجه­ی سانتیگراد، دایره: 430 درجه­ی سانتیگراد)…………………………………………………………………………………………………………………………25
شکل ‏2‑7  درصد ترکیبات مختلف در محصول پیرولیز حرارتی پلی اتیلن سنگین در دمای 430 درجه­ی سانتیگراد 26
شکل ‏2‑8  درصد ترکیبات مختلف در محصول پیرولیز کاتالیستی پلی اتیلن سنگین با کاتالیست FCC در دمای 430 درجه­ی سانتیگراد 27
شکل ‏2‑9 مقایسه هیدروکربن­های حاصل از تخریب کاتالیستی ترکیب پلاستیک­های پرمصرف به عنوان تابعی از زمان در دماهای مختلف و با کاتالیست  FCC. 29
شکل ‏2‑10 تأثیر دما بر روی ترکیب درصد محصولات پیرولیزپلی اتیلن سنگین 32
شکل ‏2‑11 مقایسه هیدروکربن­های حاصل از تخریب کاتالیستی ترکیب پلاستیک­های پرمصرف به عنوان تابعی از زمان در دمای 390 درجه سانتیگراد و با کاتالیست­های مختلف… 35
شکل ‏2‑12 بازده محصول مایع حاصل از تخریب کاتالیستی پسماندهای پلاستیکی مختلف با کاتالیست FCC در دمای 400 درجه سانتیگراد 36
شکل ‏2‑13 فرآیند پیرولیز LDPE(Miskokzi) 40
شکل ‏3‑1 سیستم آزمایشگاهی پیرولیز 43
شکل ‏4‑2  تنوع ترکیبات موجود در محصول مایع حاصل از پیرولیز پلی بوتادین رابر با 15 درصد از کاتالیست­های مختلف. 64
شکل ‏4‑3 توزیع محصول مایع از نظر تعدادکربن، درصد محصولات در گستره­ی بنزین حاصل از پیرولیز پلی بوتادین رابر باکاتالیست­های مختلف. 65
شکل ‏4‑4 توزیع ترکیبات مختلف در محصول مایع حاصل از پیرولیز پلی بوتادین رابر با درصدهای مختلف از کاتالیست FCC. 68
شکل ‏4‑5  مقایسه­ی میزان محصول مایع خروجی بر حسب زمان و دما در پیرولیز PBR  با کاتالیست FCC. 71
شکل ‏4‑6  توزیع ترکیبات مختلف در محصول مایع حاصل از پیرولیز استایرن بوتادین رابر با 15 درصد از کاتالیست­های مختلف. 75
شکل ‏4‑7  توزیع محصول مایع از نظر تعدادکربن ودرصد محصولات در گستره­ی بنزین حاصل از پیرولیز استایرن بوتادین رابر با کاتالیست­های مختلف. 76
شکل ‏4‑8 میزان محصول مایع خروجی بر حسب زمان و دما در پیرولیز SBR  با کاتالیست FCC.. 79
شکل ‏4‑9 مقدار محصول مایع خروجی در پیرولیز پلیمرهای مختلف با کاتالیست FCC در شرایط مناسب. 80
شکل ‏4‑10 مقدار محصول مایع خروجی در پیرولیز پلیمرهای مختلف با کاتالیستHZSM-5. 81
شکل ‏4‑11 مقدار محصول مایع  خروجی حاصل از پیرولیز پلیمرهای مختلف با کاتالیست H-Mordenite. 83
شکل ‏4‑12  نمودار کاهش وزن پلی بوتادین رابر در سرعت­های حرارت دهی مختلف. Error! Bookmark not defined.
شکل ‏4‑13 نمودار تخریب حرارتی نمونه­ی H26 در سرعت­های 15، 30 و45 درجه­ی سانتیگراد بر دقیقه. 88
شکل ‏4‑14 نمودار تخریب حرارتی نمونه­ی H33 در سرعت­های 15، 30 و45 درجه­ی سانتیگراد بر دقیقه. 88
شکل ‏4‑15  نمودار تخریب حرارتی نمونه­ی H39 در سرعت­های 15، 30 و45 درجه­ی سانتیگراد بر دقیقه. 89
شکل ‏4‑16  نمودار تخریب حرارتی نمونه­ی H47 در سرعت­های 15، 30 و45 درجه­ی سانتیگراد بر دقیقه. 89
شکل ‏4‑17  نمودار تخریب حرارتی پلی بوتادین رابر و نمونه­های پخت شده­ی آن در سرعت 15 درجه­ی سانتیگراد بر دقیقه. 90
شکل ‏4‑18 نمودار تخریب حرارتی نمونه­ی SBR در سرعت­های 15، 30 و45 درجه­ی سانتیگراد بر دقیقه. 91
فهرست جداول
جدول ‏2‑1  انواع فرایند تبدیل پلیمرها به کوچک مولکول­ها 14
جدول ‏2‑2  درصد آروماتیک موجود در جزء  مایع حاصل از شکست مخلوط پلی الفینی در ˚C400 تحت کاتالیست HZSM-5 و در نسبت­های متفاوت پلیمر به کاتالیست… 24
جدول ‏2‑3  درصد محصولات حاصل از تخریب پلی اتیلن سنگین در 430 درجهی سانتیگراد. 24
جدول ‏2‑4  محصولات و شرایط پیرولیز پلی الفین­ها. 31
جدول ‏2‑5  اثر کاتالیست FCC روی پیرولیز در پنج درصد متفاوت از صفر تا 60 درصد کاتالیست نسبت به پلیمرپلی اتیلن سنگین در دمای  C˚450 و با سرعت همزن RPM50. 34

 

جدول ‏2‑6  تأثیر گازهای حامل مختلف بر روی محصولات پیرولیز پلی اتیلن سبک خطی  در دمای 450 درجه سانتی گراد و با کاتالیست FCC. 37
جدول ‏2‑7  جدول تأثیر همزن بر روی محصولات پیرولیز پلی اتیلن سبک خطی 39
جدول ‏3‑1 مشخصات استایرن بوتادین رابر. 45
جدول ‏3‑2 مشخصات پلی بوتادین رابر. 46
جدول ‏3‑3 مشخصات پلی پروپیلن. 46
جدول ‏3‑4  مشخصات کاتالیست FCC مورد استفاده. 47
جدول ‏3‑5  نتایج آزمون  BET كاتالیست­های تجاری استفاده شده. 47
جدول ‏3‑6  مشخصات پلی اتیلن سنگین استفاده شده. 48
جدول ‏4‑1  درصد محصولات پیرولیز حرارتی وکاتالیستی  پلی اتیلن سنگین در آزمایش­های مختلف. 51
جدول ‏4‑2  توزیع ترکیبات مختلف در محصول مایع حاصل از پیرولیز پلی اتیلن سنگین با 15 درصد از کاتالیست FCC و HZSM-5. 53
جدول ‏4‑3  توزیع محصول مایع از نظر تعدادکربن، درصد محصولات در گستره­ی بنزین حاصل از پیرولیز پلی اتیلن سنگین با کاتالیست­های FCC و HZSM-5. 54
جدول ‏4‑4  درصد محصولات پیرولیز حرارتی و کاتالیستی پلی پروپیلن در آزمایش­های مختلف. 56
جدول ‏4‑5 توزیع ترکیبات مختلف در محصول مایع حاصل از پیرولیز پلی پروپیلن با 15 درصد از کاتالیست­های FCC وHZSM-5. 58
جدول ‏4‑6 توزیع محصول مایع از نظر تعدادکربن، درصد محصولات در گستره­ی بنزین حاصل از پیرولیز پلی پروپیلن با کاتالیست­های FCC و HZSM-5. 59
جدول ‏4‑7  درصد محصولات پیرولیز حرارتی و کاتالیستی پلی بوتادین رابر در آزمایش­های مختلف. 61
جدول ‏4‑8  تنوع ترکیبات موجود در محصول مایع حاصل از پیرولیز پلی بوتادین رابر با 15 درصد از کاتالیست­های مختلف. 63
جدول ‏4‑9 توزیع محصول مایع از نظر تعدادکربن، درصد محصولات در گستره­ی بنزین حاصل از پیرولیز پلی بوتادین رابر باکاتالیست­های مختلف. 65
جدول ‏4‑10 تأثیر مقدار کاتالیست  FCC بر پیرولیز پلی بوتادین رابر. 66

این مطلب را هم بخوانید :

 

جدول ‏4‑11 توزیع ترکیبات مختلف در محصول مایع حاصل از پیرولیز پلی بوتادین رابر با درصدهای مختلف از کاتالیست FCC. 67
جدول ‏4‑12 توزیع محصول مایع از نظر تعدادکربن ودرصد محصولات در گستره­ی بنزین حاصل از پیرولیز پلی بوتادین رابر با درصدهای مختلف از کاتالیست FCC. 68
جدول ‏4‑13 روند تغییرات دما و میزان محصول مایع خروجی طی فرآیند پیرولیز پلی بوتادین رابر. 69
جدول ‏4‑14  درصد محصولات پیرولیز حرارتی و کاتالیستی استایرن بوتادین رابر در آزمایش­های مختلف. 72
جدول ‏4‑15 توزیع ترکیبات مختلف در محصول مایع حاصل از پیرولیز استایرن بوتادین رابر با 15 درصد از کاتالیست­های مختلف. 74
جدول ‏4‑16 توزیع محصول مایع از نظر تعدادکربن ودرصد محصولات در گستره­ی بنزین حاصل از پیرولیز استایرن بوتادین رابر با کاتالیست­های مختلف. 76
جدول ‏4‑17 تأثیر درصد کاتالیست FCC بر پیرولیز استایرن بوتادین رابر. 77
جدول ‏4‑18 روند تغییرات دما و میزان محصول مایع طی فرآیند پیرولیز استایرن بوتادین رابر. 78
جدول ‏4‑19  اختلاف دمای T3 و T97 در تخریب پلی بوتادین رابر با سرعت­های حرارت دهی مختلف. 86
جدول ‏4‑20 مکانیسم­های شکست پلی بوتادین رابر در سه مرحله­ی شروع، رشد و اختتام برای سرعت­های مختلف. 86
جدول ‏4‑21 سیستم پخت نمونه­های پلی­بوتادین رابر با درصدهای مختلف شتاب دهنده­یTMTD. 8

چکیده

در این پژوهش پیرولیز حرارتی و کاتالیستی چهار نوع پلیمر از قبیل دو پلاستیک پلی اتیلن سنگین و پلی پروپیلن و دو لاستیک استایرن بوتادین رابر و پلی بوتادین رابر در راکتور نیمه پیوسته­ی همزن­دار و تحت گاز نیتروژن و با استفاده از کاتالیست­های HZSM-5 ، FCC و H-Mordenite بررسی شده است. در این مطالعه تنها بررسی میزان محصول مایع حاصل از پیرولیز و ترکیب آن مدنظر بوده است و از ارزیابی اجزای محصول گازی و کک صرفنظر شده است. درصد کاتالیست انتخابی برای پیرولیز پلاستیک­ها، با توجه به مقدار بهینه­ی بدست آمده در کارهای قبلی، 15 درصد انتخاب شده است. در انجام پیرولیز هر کدام از پلیمرها با انجام چندین مرحله بهینه­سازی روی راکتور، میزان محصول مایع افزایش یافت. با توجه به بررسی­های انجام شده، در میان سه کاتالیست استفاده شده، کاتالیست FCC بیشترین محصول مایع را تولید می­کند و کاتالیست HZSM-5 به دلیل اندازه حفرات ریز، عمده­ی محصول را به صورت گاز آزاد ­می­کند. با انجام آزمون کروماتوگرافی گازی، درصد اجزای محصول مایع، آروماتیک، الفین، پارافین و نفتن موجود در محصول بدست آمد و همچنین اجزای محصول مایع بر اساس تعداد کربن نیز حاصل گردید. نتایج آزمون کروماتوگرافی گازی نشان می­دهد که درصد قابل توجهی از محصول در پیرولیز با کاتالیست FCC را الفین­ها تشکیل می­دهند.
با بررسی پیرولیز حرارتی و کاتالیستی پلی بوتادین رابر با استفاده از سه کاتالیست مذکور، این نتیجه حاصل شد که پیرولیز کاتالیستی با 45 درصد کاتالیست FCC بیشترین محصول مایع را می­دهد. همچنین با توجه به داده­های آزمون کروماتوگرافی گازی، با افزایش میزان کاتالیست به دلیل احتمال بیشتر وقوع واکنش­های دیلز آلدر، جزء آروماتیکی محصول مایع نسبت به اجزای دیگر نفتن، پارافین و الفین، افزایش می­یابد و از طرف دیگر نیز به دلیل شکست بیشتر، از نظر تعداد کربن به سمت اجزای سبک­تر میل می­کند.
با ارزیابی روند خروج محصول مایع با دما و رسم نمودار آن، این مطلب منتج گردید که در پیرولیز لاستیک­ها (پلی بوتادین رابر و استایرن بوتادین رابر) به دلیل وجود پیوندهای دوگانه­ی فراوان در ساختارشان و ایجاد رادیکال­های زیاد در حین پیرولیز، یک فرآیند پیرولیز چند مرحله­ای خواهد بود و بر خلاف  پیرولیز پلاستیک­ها، محصول مایع هیدروکربنی به صورت مجزا و در چند مرحله خارج می­گردد .روند

موضوعات: بدون موضوع  لینک ثابت
 [ 12:12:00 ق.ظ ]




 

 

پایان نامه برای دریافت درجه کارشناسی ارشد (M.Sc.)

گرایش: شیمی وفناوری اسانس

 

عنوان:

بررسی تاثیر متیل جاسمونات بر متابولیت­های ثانویه و اثرآنتی­اکسیدانی گیاه نعنا فلفلی ومیزان اسانس آن Mentha piperitaL.

 

استاد راهنما:

سرکار خانم دکتر آزیتا شبرنگی

 

استاد مشاور:

جناب آقای دکتر سعید محمدی معتمد

 

سال تحصیلی93-1392

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

  فهرست مطالب

عنوان                                                                         صفحه

چکیده 1

فصل اول – کلیات

  • پیشگفتار3
  • اهمیت موضوع3
  • اهداف تحقیق 4

فصل دوم – بررسی متون و مطالعات دیگران در این زمینه

بخش اول  – گیاه شناسی

2-1-1 تیره نعنا 7

2-1-2 اختصاصات تشریحی تیره نعنا8

2-1-3 رده بندی گیاه نعنا فلفلی 8

2-1-4 اسامی مختلف 8

2-1-5 ریخت شناسی و مرفولوژی گیاه نعنا فلفلی 9

2-1-6 کشت گیاه 11

2-1-7 برداشت محصول 12

2-1-8 ترکیبات شیمیایی 12

2-1-9 اسانس نعنا فلفلی 13

2-1-10 مشخصات 14

2-1-11 تاریخچه 15

2-1-12 خواص درمانی 15

2-1-13 فرآورده های دارویی   L.) Mentha piperita)16

    بخش دوم آنتی اکسیدان ها، فلانوئید ها، فنل ها واثرات آنها

2- 2-1 رادیکال آزاد 18

2-2-2 عوامل مؤثر در تشکیل رادیکال آزاد 19

2-2-3 انواع رادیکال های آزاد 20

2-2-4 رادیکال های آزاد و بیماریها 22

2-2-5 ترکیبات آنتی اکسیدانی 23

2-2-6 آنتی اکسیدانهای طبیعی و اهمیت آن23

2-2-7 نحوه طبقه بندی آنتی اکسیدنها بر حسب عملکرد 24

2-2-8 مکانیسم علمکرد آنتی اکسیدانها محافظ 25

2-2-9 مکانیسم عملکرد آنتی اکسیدانهای شکننده زنجیره27

2-2-10 انواع آنتی اکسیدانها از نظر منشأ 29

2-2-11 نقش گیاهان به عنوان منابع آنتی اکسیدانی 30

2-2-12 کاربرد آنتی اکسیدان‏ها 31

2-2-13 فلاونوئیدها 32

2-2-14 پراکندگی فلاونوئیدها در طبیعت 33

2-2-15 نقش فلاونوئیدها در طبیعت 34

2-2- 16 ا نواع فلاونوئیدها 35

2-2-17 خواص فیزیکو شیمیایی فلاونوئیدها 36

2-2-18 نقشهای بیولوژیک فلاونوئیدها 37

2-2- 19خواص درمانی و صنعتی و اثرات فلاونوئیدها 38

2-2- 20منابع مهم غذایی 40

2-2-21 ترکیبات فنلی 40

2-2-22 ساختار شیمیایی ترکیبات فنلی 41

2-2-23 جایگاه ترکیبات فنلی و عملکرد آنها 41

   بخش سوم روشهای استخراج مواد موجود در گیاهان

2-3-1 تأثیر شرایط اکولوژیک بر مواد و خواص گیاهان دارویی 44

2-3-2 زمان برداشت 46

2-3-3 روش های خشک کردن گیاهان دارویی 46

2-3-4 آسیاب کردن 47

2-3-5 عصاره 48

2-3-6 عصاره تام 48

2-3-7 استخراج مواد گیاهی 49

2-3-8 روشهای استخراج50

2-3-9 روش های تصفیه و جدا سازی عصاره 55

2-3-10 روش های مختلف تغلیظ عصاره 56

2-3-11 روش محاسبه میزان عصاره براساس در صد 57

2-3-12 ارزیابی عصاره های گیاهی 57

    بخش چهارم  اسانس و روش های استخراج آن

2-4-1 اسانس چیست  59

2-4-2 عوامل مؤثر بر کیفیت و کمیت اسانس 59

2-4-3 محل اسانس در گیاه 60

2-4-4 ویژگی فیزیکی اسانس 60

2-4-5 جنس اسانس 61

2-4-6 شیمی اسانس62

2-4-7طبقه بندی اسانس براساس عامل شیمیایی 63

2-4-8 روش های جدا سازی اسانس از گیاه 65

2-4-9 کاربرد اسانس ها و اثرات درمانی  67

2-4-10 عوارض جانبی اسانس ها 69

2-4-11 دلیل استفاده از اسانس ها به جای گیاهان دارویی 70

بخش پنجم  متیل جاسمونات

2-5-1 هورمون های گیاهی72

2-5-2 متیل جاسمونات 72

2-5-3 ترکیبات شیمیایی متیل جاسمونات 73

2-5-4 محل تولید 73

2-5-5 روش های کاربرد 74

2-5-6 اثرات متیل جاسمونات در گیاهان 74

فصل سوم  مواد و روش ها 

   بخش اول   مواد و وسایل لازم    

3-1-1 مواد و وسایل مورد نیاز 79

3-1-2 تهیه نمونه 80

3-1-3 نحوه اسپری نمونه 81

3-1-4 جمع آوری و خشک کردن 81

3-1-5 پودر کردن  82

این مطلب را هم بخوانید :

3-1-6 تهیه عصاره به روش خیساندن(ماسراسیون) 82

3-1-7 اسانس گیری83

3-1-8 مواد و وسایل لازم برای تهیه اسانس83

3- 1-9 روش تهیه اسانس    84

    بخش دوم  روش های اندازه گیری

3-2-1 روش اندازه گیری فعالیت آنتی اکسیدانی 87

3-2 -2 روش DPPH 87

3-2- 3تست DPPH 90

3-2-4روش کار تعیین محتوای تام فنلی 93

3-2-5 روش کار تعیین محتوای تام فلاونوئیدی94

فصل چهارم  تحلیل و آنالیز نتایج

4-1 نتایج حاصل از رشد گیاه97

4-2 نتایج استخراج اسانس 99

4-3 میزان عصاره و درصد عصاره 100

4-4 بررسی نتایج فعالیت آنتی اکسیدانی 100

4-5 بررسی نتایج حاصل از محتوای تام فنلی عصاره ها 106

4-6 بررسی نتایج حاصل از محتوای تام فلاونوئیدی عصاره ها108

فصل پنجم 

 بحث و پیشنهادات

5-1 بحث 112

5-2 پیشنهادات 116

منابع119

چکیده انگلیسی 130

ضمائم 131

فهرست اشکال

عنوان                                                                                    صفحه

شکل (1-2) گیاه نعنا فلفلی 9

شکل (2-2) گیاه نعنا فلفلی به همراه گل آذین آن 11

شکل (2-3) عوامل خارجی در تولید رادیکال آزاد 20

شکل (2-4)  ساختار موکلولی گلوتاتیون GS 26

شکل (2-5) ساختار فلاونوئیدی 32

شکل (2-6) ساختار متیل جاسمونات 73

   شکل (3-1) نمونه دریافت شده از مرکز تحقیقات ولنجک 80

   شکل (3-2) دکانتور های حاصل از چهار گروه برای تهیه ی عصاره 83

شکل (3-3) دستگاه کلونجر 84

شکل (3-4) ساختار DPPH 88

شکل (3-5)واکنش احیا رادیکال DPPH88

شکل(3-6)دستگاه اسپکتروفوتومتر 92

شکل (3-7)اثر رادیکال DPPH بر غلظت های مختلف عصاره نعنا  فلفلی92

شکل(3-8) اثر فولین –سیوکالیتو بر عصاره گیاه نعنا فلفلی94

شکل (4-1) میزان رشد نمونه شاهد با آب 97

شکل (4-2) میزان رشد نمونه شاهد با الکل98

شکل (4-3) میزان رشد نمونه تیمار 50 میکرو مولار99

شکل (4-4) میزان رشد نمونه تیمار 100 میکرو مولار100

شکل (4-5) نموداردرصد مهار DPPH در غلظت های مختلف نمونه شاهد با آب101

شکل(4-6) نمودار نموداردرصد مهار DPPH در غلظت های مختلف نمونه شاهد با الکل101

شکل (4-7) نموداردرصد مهار DPPH در غلظت های مختلف نمونه تیمار 50 میکرو مولار102

شکل(4-8) نموداردرصد مهار DPPH در غلظت های مختلف نمونه تیمار 100 میکرو مولار102

شکل (4-9) مقایسه میانگینIC50 ±STD error در نمونه های مختلف شاهدها و تیمارها103

شکل(4-10) نمودار مقایسه میانگین جذب نمونه ها در غلظت مختلف ±STD Error در سطح p*≤0.01104

شکل (4-11) نمودارحاصل از منحنی کالیبراسیون استاندارد گالیک اسید106

شکل (4-12)نمودارمیانگین جذب نمونه ها در بررسی محتوای تام فنلی±STD Error 107

شکل(4-13) نمودار حاصل از منحنی کالیبراسیون استاندارد روتین 108

شکل (4-14) نمودار میانگین جذب نمونه ها در بررسی محتوای تام فلاونوئیدی ±STD Error 109

فهرست جداول

عنوان                                                                                   صفحه

   جدول (4-1) میزان اسانس تولید شده99

جدول (4-2)میزان عصاره و درصد عصاره100

جدول (4-3) میانگین IC50 ±STD error 5 در سطحP*≤0.05104

جدول (4-4) میانگین جذب نمونه ها در بررسی محتوای فنلی ±STD error با p*≤0.01105

جدول(4-5) نتایج برحسب mg گالیک اسید درگرم نمونه های عصاره 107

جدول(4-6) نتایج برحسب mg گالیک اسید درگرم نمونه های عصاره متانولی108

جدول (4-7) میانگین جذب نمونه ها در بررسی محتوای فلاونوئیدی ±STD error با p≤0.01110

جدول(4-8) نتایج برحسب mg روتین در گرم نمونه های عصاره متانولی110

موضوعات: بدون موضوع  لینک ثابت
 [ 12:12:00 ق.ظ ]